AHDMIL: Asymmetric Hierarchical Distillation Multi-Instance Learning for Fast and Accurate Whole-Slide Image Classification
- URL: http://arxiv.org/abs/2508.05114v1
- Date: Thu, 07 Aug 2025 07:47:16 GMT
- Title: AHDMIL: Asymmetric Hierarchical Distillation Multi-Instance Learning for Fast and Accurate Whole-Slide Image Classification
- Authors: Jiuyang Dong, Jiahan Li, Junjun Jiang, Kui Jiang, Yongbing Zhang,
- Abstract summary: AHDMIL is an Asymmetric Hierarchical Distillation Multi-Instance Learning framework.<n>It eliminates irrelevant patches through a two-step training process.<n>It consistently outperforms previous state-of-the-art methods in both classification performance and inference speed.
- Score: 51.525891360380285
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Although multi-instance learning (MIL) has succeeded in pathological image classification, it faces the challenge of high inference costs due to the need to process thousands of patches from each gigapixel whole slide image (WSI). To address this, we propose AHDMIL, an Asymmetric Hierarchical Distillation Multi-Instance Learning framework that enables fast and accurate classification by eliminating irrelevant patches through a two-step training process. AHDMIL comprises two key components: the Dynamic Multi-Instance Network (DMIN), which operates on high-resolution WSIs, and the Dual-Branch Lightweight Instance Pre-screening Network (DB-LIPN), which analyzes corresponding low-resolution counterparts. In the first step, self-distillation (SD), DMIN is trained for WSI classification while generating per-instance attention scores to identify irrelevant patches. These scores guide the second step, asymmetric distillation (AD), where DB-LIPN learns to predict the relevance of each low-resolution patch. The relevant patches predicted by DB-LIPN have spatial correspondence with patches in high-resolution WSIs, which are used for fine-tuning and efficient inference of DMIN. In addition, we design the first Chebyshev-polynomial-based Kolmogorov-Arnold (CKA) classifier in computational pathology, which improves classification performance through learnable activation layers. Extensive experiments on four public datasets demonstrate that AHDMIL consistently outperforms previous state-of-the-art methods in both classification performance and inference speed. For example, on the Camelyon16 dataset, it achieves a relative improvement of 5.3% in accuracy and accelerates inference by 1.2.times. Across all datasets, area under the curve (AUC), accuracy, f1 score, and brier score show consistent gains, with average inference speedups ranging from 1.2 to 2.1 times. The code is available.
Related papers
- Clustering-Guided Multi-Layer Contrastive Representation Learning for Citrus Disease Classification [17.627760587507737]
Citrus is one of the most economically important fruit crops globally.<n> Accurate disease detection and classification serve as critical prerequisites for implementing targeted control measures.<n>Recent advancements in artificial intelligence, particularly deep learning-based computer vision algorithms, have substantially decreased time and labor requirements.
arXiv Detail & Related papers (2025-07-15T10:22:52Z) - Stochastic Primal-Dual Double Block-Coordinate for Two-way Partial AUC Maximization [56.805574957824135]
Two-way partial AUCAUC is a critical performance metric for binary classification with imbalanced data.<n>Existing algorithms for TPAUC optimization remain under-explored.<n>We introduce two innovative double-coordinate block-coordinate algorithms for TPAUC optimization.
arXiv Detail & Related papers (2025-05-28T03:55:05Z) - Fast and Accurate Gigapixel Pathological Image Classification with Hierarchical Distillation Multi-Instance Learning [51.525891360380285]
HDMIL is a hierarchical distillation multi-instance learning framework that achieves fast and accurate classification by eliminating irrelevant patches.<n> HDMIL consists of two key components: the dynamic multi-instance network (DMIN) and the lightweight instance pre-screening network (LIPN)
arXiv Detail & Related papers (2025-02-28T15:10:07Z) - DiTMoS: Delving into Diverse Tiny-Model Selection on Microcontrollers [34.282971510732736]
We introduce DiTMoS, a novel DNN training and inference framework with a selector-classifiers architecture.
A composition of weak models can exhibit high diversity and the union of them can significantly boost the accuracy upper bound.
We deploy DiTMoS on the Neucleo STM32F767ZI board and evaluate it based on three time-series datasets for human activity recognition, keywords spotting, and emotion recognition.
arXiv Detail & Related papers (2024-03-14T02:11:38Z) - NearbyPatchCL: Leveraging Nearby Patches for Self-Supervised Patch-Level
Multi-Class Classification in Whole-Slide Images [10.8479107614771]
Whole-slide image (WSI) analysis plays a crucial role in cancer diagnosis and treatment.
In this paper, we introduce Nearby Patch Contrastive Learning (NearbyPatchCL), a novel self-supervised learning method.
Our method significantly outperforms the supervised baseline and state-of-the-art SSL methods with top-1 classification accuracy of 87.56%.
arXiv Detail & Related papers (2023-12-12T18:24:44Z) - Voxelmorph++ Going beyond the cranial vault with keypoint supervision
and multi-channel instance optimisation [8.88841928746097]
Recent Learn2Reg benchmark shows single-scale U-Net architectures fall short of state-of-the-art performance for abdominal or intra-patient lung registration.
Here, we propose two straightforward steps that greatly reduce this gap in accuracy.
First, we employ keypoint self-supervision with a novel network head that predicts a discretised heatmap.
Second, we replace multiple learned fine-tuning steps by a single instance with hand-crafted features and the Adam optimiser.
arXiv Detail & Related papers (2022-02-28T19:23:29Z) - Semi-supervised Domain Adaptive Structure Learning [72.01544419893628]
Semi-supervised domain adaptation (SSDA) is a challenging problem requiring methods to overcome both 1) overfitting towards poorly annotated data and 2) distribution shift across domains.
We introduce an adaptive structure learning method to regularize the cooperation of SSL and DA.
arXiv Detail & Related papers (2021-12-12T06:11:16Z) - Improving Calibration for Long-Tailed Recognition [68.32848696795519]
We propose two methods to improve calibration and performance in such scenarios.
For dataset bias due to different samplers, we propose shifted batch normalization.
Our proposed methods set new records on multiple popular long-tailed recognition benchmark datasets.
arXiv Detail & Related papers (2021-04-01T13:55:21Z) - One-Shot Object Detection without Fine-Tuning [62.39210447209698]
We introduce a two-stage model consisting of a first stage Matching-FCOS network and a second stage Structure-Aware Relation Module.
We also propose novel training strategies that effectively improve detection performance.
Our method exceeds the state-of-the-art one-shot performance consistently on multiple datasets.
arXiv Detail & Related papers (2020-05-08T01:59:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.