An edge detection-based deep learning approach for tear meniscus height measurement
- URL: http://arxiv.org/abs/2403.15853v1
- Date: Sat, 23 Mar 2024 14:16:26 GMT
- Title: An edge detection-based deep learning approach for tear meniscus height measurement
- Authors: Kesheng Wang, Kunhui Xu, Xiaoyu Chen, Chunlei He, Jianfeng Zhang, Dexing Kong, Qi Dai, Shoujun Huang,
- Abstract summary: We introduce an automatic TMH measurement technique based on edge detection-assisted annotation within a deep learning framework.
For improved segmentation of the pupil and tear meniscus areas, the convolutional neural network Inceptionv3 was first implemented.
The algorithm can automatically screen images based on their quality,segment the pupil and tear meniscus areas, and automatically measure TMH.
- Score: 20.311238180811404
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Automatic measurements of tear meniscus height (TMH) have been achieved by using deep learning techniques; however, annotation is significantly influenced by subjective factors and is both time-consuming and labor-intensive. In this paper, we introduce an automatic TMH measurement technique based on edge detection-assisted annotation within a deep learning framework. This method generates mask labels less affected by subjective factors with enhanced efficiency compared to previous annotation approaches. For improved segmentation of the pupil and tear meniscus areas, the convolutional neural network Inceptionv3 was first implemented as an image quality assessment model, effectively identifying higher-quality images with an accuracy of 98.224%. Subsequently, by using the generated labels, various algorithms, including Unet, ResUnet, Deeplabv3+FcnResnet101, Deeplabv3+FcnResnet50, FcnResnet50, and FcnResnet101 were trained, with Unet demonstrating the best performance. Finally, Unet was used for automatic pupil and tear meniscus segmentation to locate the center of the pupil and calculate TMH,respectively. An evaluation of the mask quality predicted by Unet indicated a Mean Intersection over Union of 0.9362, a recall of 0.9261, a precision of 0.9423, and an F1-Score of 0.9326. Additionally, the TMH predicted by the model was assessed, with the fitting curve represented as y= 0.982x-0.862, an overall correlation coefficient of r^2=0.961 , and an accuracy of 94.80% (237/250). In summary, the algorithm can automatically screen images based on their quality,segment the pupil and tear meniscus areas, and automatically measure TMH. Measurement results using the AI algorithm demonstrate a high level of consistency with manual measurements, offering significant support to clinical doctors in diagnosing dry eye disease.
Related papers
- Weakly supervised segmentation of intracranial aneurysms using a novel 3D focal modulation UNet [0.5106162890866905]
We propose FocalSegNet, a novel 3D focal modulation UNet, to detect an aneurysm and offer an initial, coarse segmentation of it from time-of-flight MRA image patches.
We trained and evaluated our model on a public dataset, and in terms of UIA detection, our model showed a low false-positive rate of 0.21 and a high sensitivity of 0.80.
arXiv Detail & Related papers (2023-08-06T03:28:08Z) - An open-source deep learning algorithm for efficient and fully-automatic
analysis of the choroid in optical coherence tomography [3.951995351344523]
We develop an open-source, fully-automatic deep learning algorithm, DeepGPET, for choroid region segmentation in optical coherence tomography ( OCT) data.
arXiv Detail & Related papers (2023-07-03T10:01:36Z) - Uncertainty-inspired Open Set Learning for Retinal Anomaly
Identification [71.06194656633447]
We establish an uncertainty-inspired open-set (UIOS) model, which was trained with fundus images of 9 retinal conditions.
Our UIOS model with thresholding strategy achieved an F1 score of 99.55%, 97.01% and 91.91% for the internal testing set.
UIOS correctly predicted high uncertainty scores, which would prompt the need for a manual check in the datasets of non-target categories retinal diseases, low-quality fundus images, and non-fundus images.
arXiv Detail & Related papers (2023-04-08T10:47:41Z) - Acute ischemic stroke lesion segmentation in non-contrast CT images
using 3D convolutional neural networks [0.0]
We propose an automatic algorithm aimed at volumetric segmentation of acute ischemic stroke lesion in non-contrast computed tomography brain 3D images.
Our deep-learning approach is based on the popular 3D U-Net convolutional neural network architecture.
arXiv Detail & Related papers (2023-01-17T10:39:39Z) - Medical Application of Geometric Deep Learning for the Diagnosis of
Glaucoma [60.42955087779866]
3D scans of the optic nerve head (ONH) were acquired with Spectralis OCT for 477 glaucoma and 2,296 non-glaucoma subjects at the Singapore National Eye Centre.
All volumes were automatically segmented using deep learning to identify 7 major neural and connective tissues.
PointNet was able to provide a robust glaucoma diagnosis solely from the ONH represented as a 3D point cloud.
arXiv Detail & Related papers (2022-04-14T14:55:25Z) - EMT-NET: Efficient multitask network for computer-aided diagnosis of
breast cancer [58.720142291102135]
We propose an efficient and light-weighted learning architecture to classify and segment breast tumors simultaneously.
We incorporate a segmentation task into a tumor classification network, which makes the backbone network learn representations focused on tumor regions.
The accuracy, sensitivity, and specificity of tumor classification is 88.6%, 94.1%, and 85.3%, respectively.
arXiv Detail & Related papers (2022-01-13T05:24:40Z) - Assessing glaucoma in retinal fundus photographs using Deep Feature
Consistent Variational Autoencoders [63.391402501241195]
glaucoma is challenging to detect since it remains asymptomatic until the symptoms are severe.
Early identification of glaucoma is generally made based on functional, structural, and clinical assessments.
Deep learning methods have partially solved this dilemma by bypassing the marker identification stage and analyzing high-level information directly to classify the data.
arXiv Detail & Related papers (2021-10-04T16:06:49Z) - Systematic Clinical Evaluation of A Deep Learning Method for Medical
Image Segmentation: Radiosurgery Application [48.89674088331313]
We systematically evaluate a Deep Learning (DL) method in a 3D medical image segmentation task.
Our method is integrated into the radiosurgery treatment process and directly impacts the clinical workflow.
arXiv Detail & Related papers (2021-08-21T16:15:40Z) - Vision Transformers for femur fracture classification [59.99241204074268]
The Vision Transformer (ViT) was able to correctly predict 83% of the test images.
Good results were obtained in sub-fractures with the largest and richest dataset ever.
arXiv Detail & Related papers (2021-08-07T10:12:42Z) - SCREENet: A Multi-view Deep Convolutional Neural Network for
Classification of High-resolution Synthetic Mammographic Screening Scans [3.8137985834223502]
We develop and evaluate a multi-view deep learning approach to the analysis of high-resolution synthetic mammograms.
We assess the effect on accuracy of image resolution and training set size.
arXiv Detail & Related papers (2020-09-18T00:12:33Z) - Human Recognition Using Face in Computed Tomography [26.435782518817295]
We propose an automatic processing pipeline that first detects facial landmarks in 3D for ROI extraction and then generates aligned 2D depth images, which are used for automatic recognition.
Our method achieves a 1:56 identification accuracy of 92.53% and a 1:1 verification accuracy of 96.12%, outperforming other competing approaches.
arXiv Detail & Related papers (2020-05-28T18:59:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.