論文の概要: Deep Domain Adaptation: A Sim2Real Neural Approach for Improving Eye-Tracking Systems
- arxiv url: http://arxiv.org/abs/2403.15947v1
- Date: Sat, 23 Mar 2024 22:32:06 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-26 20:22:33.316225
- Title: Deep Domain Adaptation: A Sim2Real Neural Approach for Improving Eye-Tracking Systems
- Title(参考訳): Deep Domain Adaptation: 視線追跡システム改善のためのSim2Real Neural Approach
- Authors: Viet Dung Nguyen, Reynold Bailey, Gabriel J. Diaz, Chengyi Ma, Alexander Fix, Alexander Ororbia,
- Abstract要約: 眼球画像のセグメンテーションは、最終視線推定に大きな影響を及ぼす眼球追跡の重要なステップである。
対象視線画像と合成訓練データとの重なり合いを測定するために,次元還元法を用いている。
提案手法は,シミュレーションと実世界のデータサンプルの相違に対処する際の頑健で,性能が向上する。
- 参考スコア(独自算出の注目度): 80.62854148838359
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Eye image segmentation is a critical step in eye tracking that has great influence over the final gaze estimate. Segmentation models trained using supervised machine learning can excel at this task, their effectiveness is determined by the degree of overlap between the narrow distributions of image properties defined by the target dataset and highly specific training datasets, of which there are few. Attempts to broaden the distribution of existing eye image datasets through the inclusion of synthetic eye images have found that a model trained on synthetic images will often fail to generalize back to real-world eye images. In remedy, we use dimensionality-reduction techniques to measure the overlap between the target eye images and synthetic training data, and to prune the training dataset in a manner that maximizes distribution overlap. We demonstrate that our methods result in robust, improved performance when tackling the discrepancy between simulation and real-world data samples.
- Abstract(参考訳): 眼球画像のセグメンテーションは、最終視線推定に大きな影響を及ぼす眼球追跡の重要なステップである。
教師付き機械学習を用いてトレーニングされたセグメンテーションモデルは、このタスクにおいて優れており、それらの効果は、ターゲットデータセットによって定義された画像特性の狭い分布と、非常に特定のトレーニングデータセットの重複度によって決定される。
合成眼画像を含め、既存の眼画像データセットの分布を広げようとする試みは、合成眼画像に基づいて訓練されたモデルが現実世界の眼画像への一般化に失敗することが多いことを発見した。
治療では,対象の眼画像と合成訓練データとの重なりを計測し,分布の重なりを最大化する方法でトレーニングデータセットを訓練する。
シミュレーションと実世界のデータサンプルの相違に対処する際,本手法は頑健で,性能が向上することを示した。
関連論文リスト
- Zero-Shot Object-Centric Representation Learning [72.43369950684057]
ゼロショット一般化のレンズによる現在の対象中心法について検討する。
8つの異なる合成および実世界のデータセットからなるベンチマークを導入する。
多様な実世界の画像のトレーニングにより、見えないシナリオへの転送性が向上することがわかった。
論文 参考訳(メタデータ) (2024-08-17T10:37:07Z) - Improving the Effectiveness of Deep Generative Data [5.856292656853396]
下流の画像処理タスクのための純粋合成画像のモデルを訓練すると、実際のデータに対するトレーニングに比べ、望ましくない性能低下が生じる。
本稿では,この現象に寄与する要因を記述した新しい分類法を提案し,CIFAR-10データセットを用いて検討する。
本手法は,合成データと合成データの混合による学習と合成データのみの学習において,下流分類タスクのベースラインに優れる。
論文 参考訳(メタデータ) (2023-11-07T12:57:58Z) - LEyes: A Lightweight Framework for Deep Learning-Based Eye Tracking
using Synthetic Eye Images [9.150553995510217]
我々は、従来の手法とは異なり、ビデオベースのアイトラッキングに必要な重要な画像のみをモデル化する「ライトアイズ」または「リーズ」というフレームワークを提案する。
我々は、Leyesを用いて訓練されたモデルが、瞳孔やCRの局在の点から他の最先端アルゴリズムよりも一貫して優れていることを実証した。
論文 参考訳(メタデータ) (2023-09-12T11:08:14Z) - Cut-Paste Consistency Learning for Semi-Supervised Lesion Segmentation [0.20305676256390934]
半教師付き学習は、深層ニューラルネットワークを訓練する際のデータ効率を改善する可能性がある。
本稿では,切削ペースト増分法と整合性正規化の考え方を基礎として,簡易な半教師付き学習法を提案する。
論文 参考訳(メタデータ) (2022-10-01T04:43:54Z) - Dense Depth Distillation with Out-of-Distribution Simulated Images [30.79756881887895]
単分子深度推定(MDE)のためのデータフリー知識蒸留(KD)について検討する。
KDは、訓練された教師モデルからそれを圧縮し、対象領域でのトレーニングデータを欠くことにより、現実世界の深度知覚タスクの軽量モデルを学ぶ。
提案手法は, トレーニング画像の1/6に留まらず, ベースラインKDのマージンが良好であり, 性能も若干向上していることを示す。
論文 参考訳(メタデータ) (2022-08-26T07:10:01Z) - EllSeg-Gen, towards Domain Generalization for head-mounted eyetracking [19.913297057204357]
このようなアーティファクトの存在にもかかわらず、畳み込みネットワークは視線特徴の抽出に優れていることを示す。
複数のデータセットでトレーニングされた単一モデルのパフォーマンスを、個々のデータセットでトレーニングされたモデルのプールと比較する。
その結果, 眼球画像を用いたモデルでは, マルチセットトレーニングにより, 外観の多様性が向上することが示唆された。
論文 参考訳(メタデータ) (2022-05-04T08:35:52Z) - Towards Scale Consistent Monocular Visual Odometry by Learning from the
Virtual World [83.36195426897768]
仮想データから絶対スケールを取得するための新しいフレームワークであるVRVOを提案する。
まず、モノクロ実画像とステレオ仮想データの両方を用いて、スケール対応の異種ネットワークをトレーニングする。
結果として生じるスケール一貫性の相違は、直接VOシステムと統合される。
論文 参考訳(メタデータ) (2022-03-11T01:51:54Z) - SIR: Self-supervised Image Rectification via Seeing the Same Scene from
Multiple Different Lenses [82.56853587380168]
本稿では、異なるレンズからの同一シーンの歪み画像の補正結果が同一であるべきという重要な知見に基づいて、新しい自己監督画像補正法を提案する。
我々は、歪みパラメータから修正画像を生成し、再歪み画像を生成するために、微分可能なワープモジュールを利用する。
本手法は,教師付きベースライン法や代表的最先端手法と同等あるいはそれ以上の性能を実現する。
論文 参考訳(メタデータ) (2020-11-30T08:23:25Z) - Two-shot Spatially-varying BRDF and Shape Estimation [89.29020624201708]
形状とSVBRDFを段階的に推定した新しいディープラーニングアーキテクチャを提案する。
ドメインランダム化された幾何学と現実的な材料を用いた大規模合成学習データセットを作成する。
合成データセットと実世界のデータセットの両方の実験により、合成データセットでトレーニングされたネットワークが、実世界の画像に対してうまく一般化できることが示されている。
論文 参考訳(メタデータ) (2020-04-01T12:56:13Z) - Pathological Retinal Region Segmentation From OCT Images Using Geometric
Relation Based Augmentation [84.7571086566595]
本稿では,幾何学と形状の内在的関係を共同で符号化することで,従来のGANベースの医用画像合成法よりも優れた手法を提案する。
提案手法は,取得手順の異なる画像を有する公開RETOUCHデータセット上で,最先端のセグメンテーション手法より優れている。
論文 参考訳(メタデータ) (2020-03-31T11:50:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。