論文の概要: SM2C: Boost the Semi-supervised Segmentation for Medical Image by using Meta Pseudo Labels and Mixed Images
- arxiv url: http://arxiv.org/abs/2403.16009v1
- Date: Sun, 24 Mar 2024 04:39:40 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-26 17:55:17.295525
- Title: SM2C: Boost the Semi-supervised Segmentation for Medical Image by using Meta Pseudo Labels and Mixed Images
- Title(参考訳): SM2C:メタ擬似ラベルと混合画像を用いた医用画像の半教師付きセグメンテーションの促進
- Authors: Yifei Wang, Chuhong Zhu,
- Abstract要約: 医用画像のセマンティックな特徴を学習する能力を向上させるために,SM2C(Scaling-up Mix with Multi-Class)を導入した。
セグメンテーションオブジェクトの形状を多様化し、各サンプル内の意味情報を豊かにすることにより、SM2Cはそのポテンシャルを示す。
提案したフレームワークは、最先端のフレームワークよりも大幅に改善されている。
- 参考スコア(独自算出の注目度): 13.971120210536995
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recently, machine learning-based semantic segmentation algorithms have demonstrated their potential to accurately segment regions and contours in medical images, allowing the precise location of anatomical structures and abnormalities. Although medical images are difficult to acquire and annotate, semi-supervised learning methods are efficient in dealing with the scarcity of labeled data. However, overfitting is almost inevitable due to the limited images for training. Furthermore, the intricate shapes of organs and lesions in medical images introduce additional complexity in different cases, preventing networks from acquiring a strong ability to generalize. To this end, we introduce a novel method called Scaling-up Mix with Multi-Class (SM2C). This method uses three strategies - scaling-up image size, multi-class mixing, and object shape jittering - to improve the ability to learn semantic features within medical images. By diversifying the shape of the segmentation objects and enriching the semantic information within each sample, the SM2C demonstrates its potential, especially in the training of unlabelled data. Extensive experiments demonstrate the effectiveness of the SM2C on three benchmark medical image segmentation datasets. The proposed framework shows significant improvements over state-of-the-art counterparts.
- Abstract(参考訳): 近年、機械学習に基づくセマンティックセグメンテーションアルゴリズムは、医療画像の領域や輪郭を正確に分割する可能性を示しており、解剖学的構造や異常の正確な位置を確認できる。
医用画像は取得・注釈が難しいが,ラベル付きデータの不足に対処するためには,半教師付き学習法が効果的である。
しかし、トレーニング用の画像が限られているため、オーバーフィッティングはほぼ避けられない。
さらに、医療画像の臓器や病変の複雑な形状は、異なるケースでさらなる複雑さをもたらし、ネットワークが一般化する強力な能力を得るのを防ぐ。
そこで本研究では,Scaling-up Mix with Multi-Class (SM2C) という新しい手法を提案する。
本手法では,医用画像中の意味的特徴を学習する能力を向上させるために,スケールアップ画像サイズ,マルチクラス混合,オブジェクト形状ジッタリングの3つの手法を用いる。
セグメンテーションオブジェクトの形状を多様化し、各サンプル内の意味情報を豊かにすることにより、SM2Cはその可能性を、特に未ラベルデータのトレーニングにおいて示す。
3つのベンチマーク医用画像セグメンテーションデータセットに対するSM2Cの有効性を示す大規模な実験を行った。
提案したフレームワークは、最先端のフレームワークよりも大幅に改善されている。
関連論文リスト
- Cross-model Mutual Learning for Exemplar-based Medical Image Segmentation [25.874281336821685]
Exemplar-based Medical Image(CMEMS)のためのクロスモデル相互学習フレームワーク
外来医用画像のためのクロスモデル相互学習フレームワーク(CMEMS)について紹介する。
論文 参考訳(メタデータ) (2024-04-18T00:18:07Z) - Dual-scale Enhanced and Cross-generative Consistency Learning for Semi-supervised Medical Image Segmentation [49.57907601086494]
医用画像のセグメンテーションはコンピュータ支援診断において重要な役割を担っている。
半教師型医用画像(DEC-Seg)のための新しいDual-scale Enhanced and Cross-generative consistency learning frameworkを提案する。
論文 参考訳(メタデータ) (2023-12-26T12:56:31Z) - Multi-View Vertebra Localization and Identification from CT Images [57.56509107412658]
我々は,CT画像からの多視点椎体局在と同定を提案する。
本研究では,3次元問題を異なる視点における2次元局所化および識別タスクに変換する。
本手法は,多視点グローバル情報を自然に学習することができる。
論文 参考訳(メタデータ) (2023-07-24T14:43:07Z) - Implicit Anatomical Rendering for Medical Image Segmentation with
Stochastic Experts [11.007092387379078]
医用画像セグメンテーションの学習を支援するために,解剖学的レベルで設計された汎用的な暗黙的ニューラルネットワークレンダリングフレームワークであるMORSEを提案する。
医用画像のセグメンテーションをエンドツーエンドのレンダリング問題として定式化する。
実験の結果,MORSEは異なる医療セグメントのバックボーンでうまく機能することが示された。
論文 参考訳(メタデータ) (2023-04-06T16:44:03Z) - Self-Supervised Correction Learning for Semi-Supervised Biomedical Image
Segmentation [84.58210297703714]
半教師付きバイオメディカルイメージセグメンテーションのための自己教師付き補正学習パラダイムを提案する。
共有エンコーダと2つの独立デコーダを含むデュアルタスクネットワークを設計する。
異なるタスクのための3つの医用画像分割データセットの実験により,本手法の優れた性能が示された。
論文 参考訳(メタデータ) (2023-01-12T08:19:46Z) - PCRLv2: A Unified Visual Information Preservation Framework for
Self-supervised Pre-training in Medical Image Analysis [56.63327669853693]
本稿では,ピクセルレベルの情報を高レベルなセマンティクスに明示的にエンコードするための画素復元タスクを提案する。
また,画像理解を支援する強力なツールであるスケール情報の保存についても検討する。
提案されている統合SSLフレームワークは、さまざまなタスクで自己管理されたフレームワークを超越している。
論文 参考訳(メタデータ) (2023-01-02T17:47:27Z) - Mine yOur owN Anatomy: Revisiting Medical Image Segmentation with Extremely Limited Labels [54.58539616385138]
我々は、Mine yOur owN Anatomy (MONA) と呼ばれる、新しい半教師付き2次元医用画像セグメンテーションフレームワークを紹介する。
まず、先行研究では、すべてのピクセルがモデルトレーニングに等しく重要であると論じており、我々はこの1つだけで意味のある解剖学的特徴を定義できないことを経験的に観察している。
第2に,医療画像を解剖学的特徴の集合に分解できるモデルを構築する。
論文 参考訳(メタデータ) (2022-09-27T15:50:31Z) - CUTS: A Deep Learning and Topological Framework for Multigranular Unsupervised Medical Image Segmentation [8.307551496968156]
医用画像セグメンテーションのための教師なしディープラーニングフレームワークCUTSを提案する。
各画像に対して、画像内コントラスト学習と局所パッチ再構成による埋め込みマップを生成する。
CUTSは、様々な粒度の特徴をハイライトする粗い粒度のセグメンテーションを連続的に生成する。
論文 参考訳(メタデータ) (2022-09-23T01:09:06Z) - Mixed-UNet: Refined Class Activation Mapping for Weakly-Supervised
Semantic Segmentation with Multi-scale Inference [28.409679398886304]
我々は、デコードフェーズに2つの並列分岐を持つMixed-UNetという新しいモデルを開発する。
地域病院や公開データセットから収集したデータセットに対して,いくつかの一般的なディープラーニングに基づくセグメンテーションアプローチに対して,設計したMixed-UNetを評価した。
論文 参考訳(メタデータ) (2022-05-06T08:37:02Z) - Cross-level Contrastive Learning and Consistency Constraint for
Semi-supervised Medical Image Segmentation [46.678279106837294]
半教師型医用画像セグメンテーションにおける局所特徴の表現能力を高めるためのクロスレベルコンストラシティブ学習手法を提案する。
クロスレベルなコントラスト学習と一貫性制約の助けを借りて、非ラベル付きデータを効果的に探索してセグメンテーション性能を向上させることができる。
論文 参考訳(メタデータ) (2022-02-08T15:12:11Z) - Few-shot Medical Image Segmentation using a Global Correlation Network
with Discriminative Embedding [60.89561661441736]
医療画像分割のための新しい手法を提案する。
深層畳み込みネットワークを用いた数ショット画像セグメンタを構築します。
深層埋め込みの識別性を高め,同一クラスの特徴領域のクラスタリングを促進する。
論文 参考訳(メタデータ) (2020-12-10T04:01:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。