Semantic Is Enough: Only Semantic Information For NeRF Reconstruction
- URL: http://arxiv.org/abs/2403.16043v1
- Date: Sun, 24 Mar 2024 07:04:08 GMT
- Title: Semantic Is Enough: Only Semantic Information For NeRF Reconstruction
- Authors: Ruibo Wang, Song Zhang, Ping Huang, Donghai Zhang, Wei Yan,
- Abstract summary: This research aims to extend the Semantic Neural Radiance Fields (Semantic-NeRF) model by focusing solely on semantic output.
We reformulate the model and its training procedure to leverage only the cross-entropy loss between the model semantic output and the ground truth semantic images.
- Score: 12.156617601347769
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent research that combines implicit 3D representation with semantic information, like Semantic-NeRF, has proven that NeRF model could perform excellently in rendering 3D structures with semantic labels. This research aims to extend the Semantic Neural Radiance Fields (Semantic-NeRF) model by focusing solely on semantic output and removing the RGB output component. We reformulate the model and its training procedure to leverage only the cross-entropy loss between the model semantic output and the ground truth semantic images, removing the colour data traditionally used in the original Semantic-NeRF approach. We then conduct a series of identical experiments using the original and the modified Semantic-NeRF model. Our primary objective is to obverse the impact of this modification on the model performance by Semantic-NeRF, focusing on tasks such as scene understanding, object detection, and segmentation. The results offer valuable insights into the new way of rendering the scenes and provide an avenue for further research and development in semantic-focused 3D scene understanding.
Related papers
- DreamHOI: Subject-Driven Generation of 3D Human-Object Interactions with Diffusion Priors [4.697267141773321]
We present DreamHOI, a novel method for zero-shot synthesis of human-object interactions (HOIs)
We leverage text-to-image diffusion models trained on billions of image-caption pairs to generate realistic HOIs.
We validate our approach through extensive experiments, demonstrating its effectiveness in generating realistic HOIs.
arXiv Detail & Related papers (2024-09-12T17:59:49Z) - Towards Human-Level 3D Relative Pose Estimation: Generalizable, Training-Free, with Single Reference [62.99706119370521]
Humans can easily deduce the relative pose of an unseen object, without label/training, given only a single query-reference image pair.
We propose a novel 3D generalizable relative pose estimation method by elaborating (i) with a 2.5D shape from an RGB-D reference, (ii) with an off-the-shelf differentiable, and (iii) with semantic cues from a pretrained model like DINOv2.
arXiv Detail & Related papers (2024-06-26T16:01:10Z) - GP-NeRF: Generalized Perception NeRF for Context-Aware 3D Scene Understanding [101.32590239809113]
Generalized Perception NeRF (GP-NeRF) is a novel pipeline that makes the widely used segmentation model and NeRF work compatibly under a unified framework.
We propose two self-distillation mechanisms, i.e., the Semantic Distill Loss and the Depth-Guided Semantic Distill Loss, to enhance the discrimination and quality of the semantic field.
arXiv Detail & Related papers (2023-11-20T15:59:41Z) - Edit-DiffNeRF: Editing 3D Neural Radiance Fields using 2D Diffusion
Model [11.05302598034426]
Combination of pretrained diffusion models with neural radiance fields (NeRFs) has emerged as a promising approach for text-to-3D generation.
We propose the Edit-DiffNeRF framework, which is composed of a frozen diffusion model, a proposed delta module to edit the latent semantic space of the diffusion model, and a NeRF.
Our proposed method has been shown to effectively edit real-world 3D scenes, resulting in 25% improvement in the alignment of the performed 3D edits with text instructions.
arXiv Detail & Related papers (2023-06-15T23:41:58Z) - RePaint-NeRF: NeRF Editting via Semantic Masks and Diffusion Models [36.236190350126826]
We propose a novel framework that can take RGB images as input and alter the 3D content in neural scenes.
Specifically, we semantically select the target object and a pre-trained diffusion model will guide the NeRF model to generate new 3D objects.
Experiment results show that our algorithm is effective for editing 3D objects in NeRF under different text prompts.
arXiv Detail & Related papers (2023-06-09T04:49:31Z) - Single-Stage Diffusion NeRF: A Unified Approach to 3D Generation and
Reconstruction [77.69363640021503]
3D-aware image synthesis encompasses a variety of tasks, such as scene generation and novel view synthesis from images.
We present SSDNeRF, a unified approach that employs an expressive diffusion model to learn a generalizable prior of neural radiance fields (NeRF) from multi-view images of diverse objects.
arXiv Detail & Related papers (2023-04-13T17:59:01Z) - SegNeRF: 3D Part Segmentation with Neural Radiance Fields [63.12841224024818]
SegNeRF is a neural field representation that integrates a semantic field along with the usual radiance field.
SegNeRF is capable of simultaneously predicting geometry, appearance, and semantic information from posed images, even for unseen objects.
SegNeRF is able to generate an explicit 3D model from a single image of an object taken in the wild, with its corresponding part segmentation.
arXiv Detail & Related papers (2022-11-21T07:16:03Z) - PeRFception: Perception using Radiance Fields [72.99583614735545]
We create the first large-scale implicit representation datasets for perception tasks, called the PeRFception.
It shows a significant memory compression rate (96.4%) from the original dataset, while containing both 2D and 3D information in a unified form.
We construct the classification and segmentation models that directly take as input this implicit format and also propose a novel augmentation technique to avoid overfitting on backgrounds of images.
arXiv Detail & Related papers (2022-08-24T13:32:46Z) - Sem2NeRF: Converting Single-View Semantic Masks to Neural Radiance
Fields [49.41982694533966]
We introduce a new task, Semantic-to-NeRF translation, conditioned on one single-view semantic mask as input.
In particular, Sem2NeRF addresses the highly challenging task by encoding the semantic mask into the latent code that controls the 3D scene representation of a pretrained decoder.
We verify the efficacy of the proposed Sem2NeRF and demonstrate it outperforms several strong baselines on two benchmark datasets.
arXiv Detail & Related papers (2022-03-21T09:15:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.