論文の概要: Entity-NeRF: Detecting and Removing Moving Entities in Urban Scenes
- arxiv url: http://arxiv.org/abs/2403.16141v1
- Date: Sun, 24 Mar 2024 13:27:49 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-26 17:25:57.728158
- Title: Entity-NeRF: Detecting and Removing Moving Entities in Urban Scenes
- Title(参考訳): Entity-NeRF:都市景観における移動体の検出と除去
- Authors: Takashi Otonari, Satoshi Ikehata, Kiyoharu Aizawa,
- Abstract要約: 本研究は,知識ベースと統計戦略の強みを組み合わせた,Entity-NeRFと呼ばれる革新的な手法を紹介する。
我々の総合的な実験により, Entity-NeRFは移動物体の除去や静的な都市背景の再構築において, 既存の技術よりも優れていることが示された。
- 参考スコア(独自算出の注目度): 32.24104290665675
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent advancements in the study of Neural Radiance Fields (NeRF) for dynamic scenes often involve explicit modeling of scene dynamics. However, this approach faces challenges in modeling scene dynamics in urban environments, where moving objects of various categories and scales are present. In such settings, it becomes crucial to effectively eliminate moving objects to accurately reconstruct static backgrounds. Our research introduces an innovative method, termed here as Entity-NeRF, which combines the strengths of knowledge-based and statistical strategies. This approach utilizes entity-wise statistics, leveraging entity segmentation and stationary entity classification through thing/stuff segmentation. To assess our methodology, we created an urban scene dataset masked with moving objects. Our comprehensive experiments demonstrate that Entity-NeRF notably outperforms existing techniques in removing moving objects and reconstructing static urban backgrounds, both quantitatively and qualitatively.
- Abstract(参考訳): 動的シーンに対するニューラルラジアンス場(NeRF)の研究の最近の進歩は、しばしばシーンダイナミックスの明示的なモデリングを含む。
しかし, 様々なカテゴリーやスケールの移動物体が存在する都市環境において, シーンダイナミクスをモデル化する上で, このアプローチは課題に直面している。
このような設定では、移動対象を効果的に排除し、静的な背景を正確に再構築することが重要となる。
本研究は,知識ベースと統計戦略の強みを組み合わせた,Entity-NeRFと呼ばれる革新的な手法を紹介する。
このアプローチは、エンティティのセグメンテーションと定性エンティティの分類をモノ/スタッフのセグメンテーションを通じて活用する。
提案手法を評価するため,移動物体をマスキングした都市景観データセットを構築した。
我々の総合的な実験により, Entity-NeRFは移動物体の除去や静的な都市背景の再構築において, 定量的かつ定性的に, 既存の技術よりも優れていることが示された。
関連論文リスト
- Zero-Shot Object-Centric Representation Learning [72.43369950684057]
ゼロショット一般化のレンズによる現在の対象中心法について検討する。
8つの異なる合成および実世界のデータセットからなるベンチマークを導入する。
多様な実世界の画像のトレーニングにより、見えないシナリオへの転送性が向上することがわかった。
論文 参考訳(メタデータ) (2024-08-17T10:37:07Z) - Learn to Memorize and to Forget: A Continual Learning Perspective of Dynamic SLAM [17.661231232206028]
暗黙的な神経表現を伴う同時局所化とマッピング(SLAM)が注目されている。
動的環境のための新しいSLAMフレームワークを提案する。
論文 参考訳(メタデータ) (2024-07-18T09:35:48Z) - Gear-NeRF: Free-Viewpoint Rendering and Tracking with Motion-aware Spatio-Temporal Sampling [70.34875558830241]
本研究では,シーンをレンダリングする動的領域の階層化モデリングを可能にする意味的セマンティックギアに基づく,時間的(4D)埋め込みの学習方法を提案する。
同時に、ほぼ無償で、当社のトラッキングアプローチは、既存のNeRFベースのメソッドでまだ達成されていない機能である、自由視点(free-view of interest)を可能にします。
論文 参考訳(メタデータ) (2024-06-06T03:37:39Z) - RoDUS: Robust Decomposition of Static and Dynamic Elements in Urban Scenes [3.1224202646855903]
都市景観における静的および動的要素を分解するパイプラインであるRoDUSについて述べる。
提案手法では、4Dセマンティック情報と組み合わされた堅牢なカーネルベースの初期化を用いて学習プロセスを選択的にガイドする。
特に,KITTI-360およびPandasetデータセットを用いた実験により,挑戦的な都市景観を正確に静的かつ動的成分に分解する手法の有効性が示された。
論文 参考訳(メタデータ) (2024-03-14T14:08:59Z) - EmerNeRF: Emergent Spatial-Temporal Scene Decomposition via
Self-Supervision [85.17951804790515]
EmerNeRFは動的駆動シーンの時空間表現を学習するためのシンプルだが強力なアプローチである。
シーンの幾何学、外観、動き、セマンティクスを自己ブートストラップで同時にキャプチャする。
本手法はセンサシミュレーションにおける最先端性能を実現する。
論文 参考訳(メタデータ) (2023-11-03T17:59:55Z) - Graphical Object-Centric Actor-Critic [55.2480439325792]
本稿では,アクター批判とモデルに基づくアプローチを組み合わせたオブジェクト中心強化学習アルゴリズムを提案する。
変換器エンコーダを用いてオブジェクト表現とグラフニューラルネットワークを抽出し、環境のダイナミクスを近似する。
本アルゴリズムは,現状のモデルフリーアクター批判アルゴリズムよりも複雑な3次元ロボット環境と構成構造をもつ2次元環境において,より優れた性能を発揮する。
論文 参考訳(メタデータ) (2023-10-26T06:05:12Z) - D2SLAM: Semantic visual SLAM based on the influence of Depth for Dynamic
environments [0.483420384410068]
一般化とシーン認識に欠ける動的要素を決定するための新しい手法を提案する。
我々は,幾何学的および意味的モジュールからの推定精度を向上するシーン深度情報を用いる。
その結果, 動的環境における正確な位置推定とマッピングを行う上で, 提案手法の有効性が示された。
論文 参考訳(メタデータ) (2022-10-16T22:13:59Z) - Discovering Objects that Can Move [55.743225595012966]
手動ラベルなしでオブジェクトを背景から分離する、オブジェクト発見の問題について検討する。
既存のアプローチでは、色、テクスチャ、位置などの外観の手がかりを使用して、ピクセルをオブジェクトのような領域に分類する。
私たちは、動的オブジェクト -- 世界で独立して動くエンティティ -- にフォーカスすることを選びます。
論文 参考訳(メタデータ) (2022-03-18T21:13:56Z) - ACID: Action-Conditional Implicit Visual Dynamics for Deformable Object
Manipulation [135.10594078615952]
本稿では,体積変形可能なオブジェクトに対する動作条件の視覚力学モデルであるACIDを紹介する。
ベンチマークには17,000以上のアクション・トラジェクトリー、6種類のぬいぐるみと78種類の変種が含まれている。
我々のモデルは、幾何学、対応、力学の予測において最高の性能を達成する。
論文 参考訳(メタデータ) (2022-03-14T04:56:55Z) - ERASOR: Egocentric Ratio of Pseudo Occupancy-based Dynamic Object
Removal for Static 3D Point Cloud Map Building [0.1474723404975345]
本稿では,pSeudo Occupancy-based dynamic object Removal の ERASOR, Egocentric RAtio という新しい静的マップ構築手法を提案する。
私たちのアプローチは、必然的に地面と接触している都市環境における最もダイナミックなオブジェクトの性質にその注意を向けます。
論文 参考訳(メタデータ) (2021-03-07T10:29:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。