論文の概要: CFAT: Unleashing TriangularWindows for Image Super-resolution
- arxiv url: http://arxiv.org/abs/2403.16143v1
- Date: Sun, 24 Mar 2024 13:31:31 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-26 17:15:58.049537
- Title: CFAT: Unleashing TriangularWindows for Image Super-resolution
- Title(参考訳): CFAT:画像の超高解像度化のために三角形のWindowsを開放
- Authors: Abhisek Ray, Gaurav Kumar, Maheshkumar H. Kolekar,
- Abstract要約: トランスフォーマーモデルが画像超解像(SR)の分野に革命をもたらした
境界レベルの歪みを軽減するために,矩形ウィンドウと同期して動作する非重なりの三角形ウィンドウ手法を提案する。
提案モデルでは,他の最先端SRアーキテクチャに比べて0.7dB性能が向上した。
- 参考スコア(独自算出の注目度): 5.130320840059732
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Transformer-based models have revolutionized the field of image super-resolution (SR) by harnessing their inherent ability to capture complex contextual features. The overlapping rectangular shifted window technique used in transformer architecture nowadays is a common practice in super-resolution models to improve the quality and robustness of image upscaling. However, it suffers from distortion at the boundaries and has limited unique shifting modes. To overcome these weaknesses, we propose a non-overlapping triangular window technique that synchronously works with the rectangular one to mitigate boundary-level distortion and allows the model to access more unique sifting modes. In this paper, we propose a Composite Fusion Attention Transformer (CFAT) that incorporates triangular-rectangular window-based local attention with a channel-based global attention technique in image super-resolution. As a result, CFAT enables attention mechanisms to be activated on more image pixels and captures long-range, multi-scale features to improve SR performance. The extensive experimental results and ablation study demonstrate the effectiveness of CFAT in the SR domain. Our proposed model shows a significant 0.7 dB performance improvement over other state-of-the-art SR architectures.
- Abstract(参考訳): トランスフォーマーベースのモデルは、複雑なコンテキスト特徴をキャプチャする固有の能力を活用することで、画像超解像(SR)の分野に革命をもたらした。
現在、トランスアーキテクチャで使用される重なり合う長方形シフトウインドウ技術は、画像アップスケーリングの品質と堅牢性を改善するための超解像モデルにおいて一般的な方法である。
しかし、境界の歪みに悩まされ、ユニークなシフトモードが制限されている。
これらの欠点を克服するため、矩形窓と同期して機能し、境界レベルの歪みを緩和し、モデルがよりユニークなシフティングモードにアクセスできるような、重なり合っていない三角形ウィンドウ手法を提案する。
本稿では,三角長方形窓面に基づく局所的な注意と,チャネルに基づくグローバルな注意を超解像に組み込んだ複合核融合注意変換器(CFAT)を提案する。
その結果、CFATは、より多くの画像ピクセル上でアテンションメカニズムを活性化し、長期のマルチスケール機能をキャプチャしてSR性能を向上させることができる。
SR領域におけるCFATの有効性について検討した。
提案モデルでは,他の最先端SRアーキテクチャと比較して0.7dB性能が向上した。
関連論文リスト
- Multi-Head Attention Residual Unfolded Network for Model-Based Pansharpening [2.874893537471256]
展開融合法は、ディープラーニングの強力な表現能力とモデルベースアプローチの堅牢性を統合する。
本稿では,衛星画像融合のためのモデルに基づく深部展開手法を提案する。
PRISMA、Quickbird、WorldView2データセットの実験結果から、本手法の優れた性能が示された。
論文 参考訳(メタデータ) (2024-09-04T13:05:00Z) - Hyper-VolTran: Fast and Generalizable One-Shot Image to 3D Object
Structure via HyperNetworks [53.67497327319569]
画像から3Dまでを1つの視点から解く新しいニューラルレンダリング手法を提案する。
提案手法では, 符号付き距離関数を表面表現として使用し, 幾何エンコードボリュームとハイパーネットワークスによる一般化可能な事前処理を取り入れた。
本実験は,一貫した結果と高速な生成による提案手法の利点を示す。
論文 参考訳(メタデータ) (2023-12-24T08:42:37Z) - Distance Weighted Trans Network for Image Completion [52.318730994423106]
本稿では,DWT(Distance-based Weighted Transformer)を利用した画像コンポーネント間の関係をよりよく理解するためのアーキテクチャを提案する。
CNNは、粗い事前の局所的なテクスチャ情報を強化するために使用される。
DWTブロックは、特定の粗いテクスチャやコヒーレントな視覚構造を復元するために使用される。
論文 参考訳(メタデータ) (2023-10-11T12:46:11Z) - MaxSR: Image Super-Resolution Using Improved MaxViT [34.53995225219387]
我々は、MaxViTのハイブリッドビジョン変換器(MaxSR)をベースとした、単一画像超解像モデルを提案する。
従来の単一画像超解像 (MaxSR) と軽量単一画像超解像 (MaxSR-light) のモデルにより, 新たな最先端性能の確立が期待できる。
論文 参考訳(メタデータ) (2023-07-14T09:26:47Z) - Cross-Spatial Pixel Integration and Cross-Stage Feature Fusion Based
Transformer Network for Remote Sensing Image Super-Resolution [13.894645293832044]
変換器を用いたモデルでは、リモートセンシング画像超解像(RSISR)の競合性能が示されている。
本稿では,RSISRのための新しいトランスアーキテクチャであるCross-Spatial Pixel IntegrationとCross-Stage Feature Fusion Based Transformer Network (SPIFFNet)を提案する。
提案手法は,画像全体のグローバル認知と理解を効果的に促進し,機能統合の効率化を図っている。
論文 参考訳(メタデータ) (2023-07-06T13:19:06Z) - RBSR: Efficient and Flexible Recurrent Network for Burst
Super-Resolution [57.98314517861539]
バースト超解像(BurstSR)は、高解像度(HR)画像を低解像度(LR)画像と雑音画像から再構成することを目的としている。
本稿では,効率よくフレキシブルなリカレントネットワークでフレーム単位のキューを融合させることを提案する。
論文 参考訳(メタデータ) (2023-06-30T12:14:13Z) - CSformer: Bridging Convolution and Transformer for Compressive Sensing [65.22377493627687]
本稿では,CNNからの詳細な空間情報を活用するためのハイブリッドフレームワークと,表現学習の強化を目的としたトランスフォーマーが提供するグローバルコンテキストを統合することを提案する。
提案手法は、適応的なサンプリングとリカバリからなるエンドツーエンドの圧縮画像センシング手法である。
実験により, 圧縮センシングにおける専用トランスアーキテクチャの有効性が示された。
論文 参考訳(メタデータ) (2021-12-31T04:37:11Z) - Asymmetric CNN for image super-resolution [102.96131810686231]
深層畳み込みニューラルネットワーク(CNN)は、過去5年間で低レベルビジョンに広く適用されています。
画像超解像のための非対称ブロック(AB)、mem?ory拡張ブロック(MEB)、高周波数特徴強調ブロック(HFFEB)からなる非対称CNN(ACNet)を提案する。
我々のACNetは、ブラインドノイズの単一画像超解像(SISR)、ブラインドSISR、ブラインドSISRを効果的に処理できる。
論文 参考訳(メタデータ) (2021-03-25T07:10:46Z) - Accurate and Lightweight Image Super-Resolution with Model-Guided Deep
Unfolding Network [63.69237156340457]
我々は、モデル誘導深部展開ネットワーク(MoG-DUN)と呼ばれるSISRに対する説明可能なアプローチを提示し、提唱する。
MoG-DUNは正確(エイリアスを少なくする)、計算効率(モデルパラメータを減らした)、多用途(多重劣化を処理できる)である。
RCAN, SRDNF, SRFBNを含む既存の最先端画像手法に対するMoG-DUN手法の優位性は、いくつかの一般的なデータセットと様々な劣化シナリオに関する広範な実験によって実証されている。
論文 参考訳(メタデータ) (2020-09-14T08:23:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。