Gaze-guided Hand-Object Interaction Synthesis: Benchmark and Method
- URL: http://arxiv.org/abs/2403.16169v3
- Date: Thu, 28 Mar 2024 06:56:45 GMT
- Title: Gaze-guided Hand-Object Interaction Synthesis: Benchmark and Method
- Authors: Jie Tian, Lingxiao Yang, Ran Ji, Yuexin Ma, Lan Xu, Jingyi Yu, Ye Shi, Jingya Wang,
- Abstract summary: We introduce the first Gaze-guided Hand-Object Interaction dataset, GazeHOI, and present a novel task for synthesizing gaze-guided hand-object interactions.
Our dataset, GazeHOI, features simultaneous 3D modeling of gaze, hand, and object interactions, comprising 479 sequences with an average duration of 19.1 seconds, 812 sub-sequences, and 33 objects of various sizes.
- Score: 63.49140028965778
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Gaze plays a crucial role in revealing human attention and intention, shedding light on the cognitive processes behind human actions. The integration of gaze guidance with the dynamics of hand-object interactions boosts the accuracy of human motion prediction. However, the lack of datasets that capture the intricate relationship and consistency among gaze, hand, and object movements remains a substantial hurdle. In this paper, we introduce the first Gaze-guided Hand-Object Interaction dataset, GazeHOI, and present a novel task for synthesizing gaze-guided hand-object interactions. Our dataset, GazeHOI, features simultaneous 3D modeling of gaze, hand, and object interactions, comprising 479 sequences with an average duration of 19.1 seconds, 812 sub-sequences, and 33 objects of various sizes. We propose a hierarchical framework centered on a gaze-guided hand-object interaction diffusion model, named GHO-Diffusion. In the pre-diffusion phase, we separate gaze conditions into spatial-temporal features and goal pose conditions at different levels of information granularity. During the diffusion phase, two gaze-conditioned diffusion models are stacked to simplify the complex synthesis of hand-object motions. Here, the object motion diffusion model generates sequences of object motions based on gaze conditions, while the hand motion diffusion model produces hand motions based on the generated object motion. To improve fine-grained goal pose alignment, we introduce a Spherical Gaussian constraint to guide the denoising step. In the subsequent post-diffusion phase, we optimize the generated hand motions using contact consistency. Our extensive experiments highlight the uniqueness of our dataset and the effectiveness of our approach.
Related papers
- ManiDext: Hand-Object Manipulation Synthesis via Continuous Correspondence Embeddings and Residual-Guided Diffusion [36.9457697304841]
ManiDext is a unified hierarchical diffusion-based framework for generating hand manipulation and grasp poses.
Our key insight is that accurately modeling the contact correspondences between objects and hands during interactions is crucial.
Our framework first generates contact maps and correspondence embeddings on the object's surface.
Based on these fine-grained correspondences, we introduce a novel approach that integrates the iterative refinement process into the diffusion process.
arXiv Detail & Related papers (2024-09-14T04:28:44Z) - DiffH2O: Diffusion-Based Synthesis of Hand-Object Interactions from Textual Descriptions [15.417836855005087]
We propose DiffH2O, a novel method to synthesize realistic, one or two-handed object interactions.
We decompose the task into a grasping stage and a text-based interaction stage.
In the grasping stage, the model only generates hand motions, whereas in the interaction phase both hand and object poses are synthesized.
arXiv Detail & Related papers (2024-03-26T16:06:42Z) - THOR: Text to Human-Object Interaction Diffusion via Relation Intervention [51.02435289160616]
We propose a novel Text-guided Human-Object Interaction diffusion model with Relation Intervention (THOR)
In each diffusion step, we initiate text-guided human and object motion and then leverage human-object relations to intervene in object motion.
We construct Text-BEHAVE, a Text2HOI dataset that seamlessly integrates textual descriptions with the currently largest publicly available 3D HOI dataset.
arXiv Detail & Related papers (2024-03-17T13:17:25Z) - HandDiffuse: Generative Controllers for Two-Hand Interactions via
Diffusion Models [48.56319454887096]
Existing hands datasets are largely short-range and the interaction is weak due to the self-occlusion and self-similarity of hands.
To rescue the data scarcity, we propose HandDiffuse12.5M, a novel dataset that consists of temporal sequences with strong two-hand interactions.
arXiv Detail & Related papers (2023-12-08T07:07:13Z) - Controllable Human-Object Interaction Synthesis [77.56877961681462]
We propose Controllable Human-Object Interaction Synthesis (CHOIS) to generate synchronized object motion and human motion in 3D scenes.
Here, language descriptions inform style and intent, and waypoints, which can be effectively extracted from high-level planning, ground the motion in the scene.
Our module seamlessly integrates with a path planning module, enabling the generation of long-term interactions in 3D environments.
arXiv Detail & Related papers (2023-12-06T21:14:20Z) - InterDiff: Generating 3D Human-Object Interactions with Physics-Informed
Diffusion [29.25063155767897]
This paper addresses a novel task of anticipating 3D human-object interactions (HOIs)
Our task is significantly more challenging, as it requires modeling dynamic objects with various shapes, capturing whole-body motion, and ensuring physically valid interactions.
Experiments on multiple human-object interaction datasets demonstrate the effectiveness of our method for this task, capable of producing realistic, vivid, and remarkably long-term 3D HOI predictions.
arXiv Detail & Related papers (2023-08-31T17:59:08Z) - Learning High-DOF Reaching-and-Grasping via Dynamic Representation of
Gripper-Object Interaction [21.03434784990944]
We propose an effective representation of grasping state characterizing the spatial interaction between the gripper and the target object.
IBS is surprisingly effective as a state representation since it well informs the fine-grained control of each finger with spatial relation against the target object.
Experiments show that it generates high-quality dexterous grasp for complex shapes with smooth grasping motions.
arXiv Detail & Related papers (2022-04-03T07:03:54Z) - TRiPOD: Human Trajectory and Pose Dynamics Forecasting in the Wild [77.59069361196404]
TRiPOD is a novel method for predicting body dynamics based on graph attentional networks.
To incorporate a real-world challenge, we learn an indicator representing whether an estimated body joint is visible/invisible at each frame.
Our evaluation shows that TRiPOD outperforms all prior work and state-of-the-art specifically designed for each of the trajectory and pose forecasting tasks.
arXiv Detail & Related papers (2021-04-08T20:01:00Z) - A Spatial-Temporal Attentive Network with Spatial Continuity for
Trajectory Prediction [74.00750936752418]
We propose a novel model named spatial-temporal attentive network with spatial continuity (STAN-SC)
First, spatial-temporal attention mechanism is presented to explore the most useful and important information.
Second, we conduct a joint feature sequence based on the sequence and instant state information to make the generative trajectories keep spatial continuity.
arXiv Detail & Related papers (2020-03-13T04:35:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.