Gaze-guided Hand-Object Interaction Synthesis: Dataset and Method
- URL: http://arxiv.org/abs/2403.16169v4
- Date: Thu, 22 Aug 2024 13:51:34 GMT
- Title: Gaze-guided Hand-Object Interaction Synthesis: Dataset and Method
- Authors: Jie Tian, Ran Ji, Lingxiao Yang, Yuexin Ma, Lan Xu, Jingyi Yu, Ye Shi, Jingya Wang,
- Abstract summary: We present GazeHOI, the first dataset to capture simultaneous 3D modeling of gaze, hand, and object interactions.
To tackle these issues, we propose a stacked gaze-guided hand-object interaction diffusion model, named GHO-Diffusion.
We also introduce HOI-Manifold Guidance during the sampling stage of GHO-Diffusion, enabling fine-grained control over generated motions.
- Score: 63.49140028965778
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Gaze plays a crucial role in revealing human attention and intention, particularly in hand-object interaction scenarios, where it guides and synchronizes complex tasks that require precise coordination between the brain, hand, and object. Motivated by this, we introduce a novel task: Gaze-Guided Hand-Object Interaction Synthesis, with potential applications in augmented reality, virtual reality, and assistive technologies. To support this task, we present GazeHOI, the first dataset to capture simultaneous 3D modeling of gaze, hand, and object interactions. This task poses significant challenges due to the inherent sparsity and noise in gaze data, as well as the need for high consistency and physical plausibility in generating hand and object motions. To tackle these issues, we propose a stacked gaze-guided hand-object interaction diffusion model, named GHO-Diffusion. The stacked design effectively reduces the complexity of motion generation. We also introduce HOI-Manifold Guidance during the sampling stage of GHO-Diffusion, enabling fine-grained control over generated motions while maintaining the data manifold. Additionally, we propose a spatial-temporal gaze feature encoding for the diffusion condition and select diffusion results based on consistency scores between gaze-contact maps and gaze-interaction trajectories. Extensive experiments highlight the effectiveness of our method and the unique contributions of our dataset.
Related papers
- ManiDext: Hand-Object Manipulation Synthesis via Continuous Correspondence Embeddings and Residual-Guided Diffusion [36.9457697304841]
ManiDext is a unified hierarchical diffusion-based framework for generating hand manipulation and grasp poses.
Our key insight is that accurately modeling the contact correspondences between objects and hands during interactions is crucial.
Our framework first generates contact maps and correspondence embeddings on the object's surface.
Based on these fine-grained correspondences, we introduce a novel approach that integrates the iterative refinement process into the diffusion process.
arXiv Detail & Related papers (2024-09-14T04:28:44Z) - DiffH2O: Diffusion-Based Synthesis of Hand-Object Interactions from Textual Descriptions [15.417836855005087]
We propose DiffH2O, a novel method to synthesize realistic, one or two-handed object interactions.
We decompose the task into a grasping stage and a text-based interaction stage.
In the grasping stage, the model only generates hand motions, whereas in the interaction phase both hand and object poses are synthesized.
arXiv Detail & Related papers (2024-03-26T16:06:42Z) - THOR: Text to Human-Object Interaction Diffusion via Relation Intervention [51.02435289160616]
We propose a novel Text-guided Human-Object Interaction diffusion model with Relation Intervention (THOR)
In each diffusion step, we initiate text-guided human and object motion and then leverage human-object relations to intervene in object motion.
We construct Text-BEHAVE, a Text2HOI dataset that seamlessly integrates textual descriptions with the currently largest publicly available 3D HOI dataset.
arXiv Detail & Related papers (2024-03-17T13:17:25Z) - HandDiffuse: Generative Controllers for Two-Hand Interactions via
Diffusion Models [48.56319454887096]
Existing hands datasets are largely short-range and the interaction is weak due to the self-occlusion and self-similarity of hands.
To rescue the data scarcity, we propose HandDiffuse12.5M, a novel dataset that consists of temporal sequences with strong two-hand interactions.
arXiv Detail & Related papers (2023-12-08T07:07:13Z) - Controllable Human-Object Interaction Synthesis [77.56877961681462]
We propose Controllable Human-Object Interaction Synthesis (CHOIS) to generate synchronized object motion and human motion in 3D scenes.
Here, language descriptions inform style and intent, and waypoints, which can be effectively extracted from high-level planning, ground the motion in the scene.
Our module seamlessly integrates with a path planning module, enabling the generation of long-term interactions in 3D environments.
arXiv Detail & Related papers (2023-12-06T21:14:20Z) - InterDiff: Generating 3D Human-Object Interactions with Physics-Informed
Diffusion [29.25063155767897]
This paper addresses a novel task of anticipating 3D human-object interactions (HOIs)
Our task is significantly more challenging, as it requires modeling dynamic objects with various shapes, capturing whole-body motion, and ensuring physically valid interactions.
Experiments on multiple human-object interaction datasets demonstrate the effectiveness of our method for this task, capable of producing realistic, vivid, and remarkably long-term 3D HOI predictions.
arXiv Detail & Related papers (2023-08-31T17:59:08Z) - Learning High-DOF Reaching-and-Grasping via Dynamic Representation of
Gripper-Object Interaction [21.03434784990944]
We propose an effective representation of grasping state characterizing the spatial interaction between the gripper and the target object.
IBS is surprisingly effective as a state representation since it well informs the fine-grained control of each finger with spatial relation against the target object.
Experiments show that it generates high-quality dexterous grasp for complex shapes with smooth grasping motions.
arXiv Detail & Related papers (2022-04-03T07:03:54Z) - TRiPOD: Human Trajectory and Pose Dynamics Forecasting in the Wild [77.59069361196404]
TRiPOD is a novel method for predicting body dynamics based on graph attentional networks.
To incorporate a real-world challenge, we learn an indicator representing whether an estimated body joint is visible/invisible at each frame.
Our evaluation shows that TRiPOD outperforms all prior work and state-of-the-art specifically designed for each of the trajectory and pose forecasting tasks.
arXiv Detail & Related papers (2021-04-08T20:01:00Z) - A Spatial-Temporal Attentive Network with Spatial Continuity for
Trajectory Prediction [74.00750936752418]
We propose a novel model named spatial-temporal attentive network with spatial continuity (STAN-SC)
First, spatial-temporal attention mechanism is presented to explore the most useful and important information.
Second, we conduct a joint feature sequence based on the sequence and instant state information to make the generative trajectories keep spatial continuity.
arXiv Detail & Related papers (2020-03-13T04:35:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.