論文の概要: Logic-based Explanations for Linear Support Vector Classifiers with Reject Option
- arxiv url: http://arxiv.org/abs/2403.16190v1
- Date: Sun, 24 Mar 2024 15:14:44 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-26 17:06:13.252085
- Title: Logic-based Explanations for Linear Support Vector Classifiers with Reject Option
- Title(参考訳): リジェクションオプション付き線形サポートベクトル分類器の論理的記述法
- Authors: Francisco Mateus Rocha Filho, Thiago Alves Rocha, Reginaldo Pereira Fernandes Ribeiro, Ajalmar Rêgo da Rocha Neto,
- Abstract要約: Support Vector (SVC) は線形分類問題に対する機械学習(ML)モデルとしてよく知られている。
本稿では、リジェクションオプション付き線形SVCに対する説明の正確性と最小性に関する形式的保証付き論理ベースのアプローチを提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Support Vector Classifier (SVC) is a well-known Machine Learning (ML) model for linear classification problems. It can be used in conjunction with a reject option strategy to reject instances that are hard to correctly classify and delegate them to a specialist. This further increases the confidence of the model. Given this, obtaining an explanation of the cause of rejection is important to not blindly trust the obtained results. While most of the related work has developed means to give such explanations for machine learning models, to the best of our knowledge none have done so for when reject option is present. We propose a logic-based approach with formal guarantees on the correctness and minimality of explanations for linear SVCs with reject option. We evaluate our approach by comparing it to Anchors, which is a heuristic algorithm for generating explanations. Obtained results show that our proposed method gives shorter explanations with reduced time cost.
- Abstract(参考訳): サポートベクトル分類器(SVC)は線形分類問題に対する機械学習(ML)モデルとしてよく知られている。
正しく分類し、スペシャリストに委譲することが難しいインスタンスを拒否する、リジェクションオプション戦略と組み合わせて使用することができる。
これによりモデルの信頼性はさらに向上する。
これを考えると、拒絶の原因の説明を得ることは、その結果を盲目的に信用しないことが重要である。
関連する研究の多くは、機械学習モデルにそのような説明を与える手段を開発したが、私たちの知る限りでは、拒否オプションが存在する場合の最良の知識は得られなかった。
本稿では、リジェクションオプション付き線形SVCに対する説明の正確性と最小性に関する形式的保証付き論理ベースのアプローチを提案する。
提案手法を,説明文を生成するヒューリスティックアルゴリズムであるAnchorsと比較することで評価する。
得られた結果から,提案手法は時間的コストを低減し,より短い説明を与えることがわかった。
関連論文リスト
- Cycles of Thought: Measuring LLM Confidence through Stable Explanations [53.15438489398938]
大規模言語モデル(LLM)は、様々なベンチマークで人間レベルの精度に到達し、さらに超えることができるが、不正確な応答における過度な自信は、依然として十分に文書化された障害モードである。
本稿では,LLMの不確実性を測定するためのフレームワークを提案する。
論文 参考訳(メタデータ) (2024-06-05T16:35:30Z) - Selective Explanations [14.312717332216073]
機械学習モデルは、1つの推論だけで特徴属性スコアを予測するために訓練される。
その効率にもかかわらず、償却された説明者は不正確な予測や誤解を招く説明を生み出すことができる。
そこで本稿では,低品質な説明文を生成する際の特徴帰属手法である選択的説明文を提案する。
論文 参考訳(メタデータ) (2024-05-29T23:08:31Z) - Bisimulation Learning [55.859538562698496]
我々は、大きな、潜在的に無限の状態空間を持つ状態遷移系の有限バイシミュレートを計算する。
提案手法は,実際に行われている他の最先端ツールよりも高速な検証結果が得られる。
論文 参考訳(メタデータ) (2024-05-24T17:11:27Z) - XAL: EXplainable Active Learning Makes Classifiers Better Low-resource Learners [71.8257151788923]
低リソーステキスト分類のための新しい説明可能なアクティブラーニングフレームワーク(XAL)を提案する。
XALは分類器に対して、推論を正当化し、合理的な説明ができないラベルのないデータを掘り下げることを推奨している。
6つのデータセットの実験では、XALは9つの強いベースラインに対して一貫した改善を達成している。
論文 参考訳(メタデータ) (2023-10-09T08:07:04Z) - CLIMAX: An exploration of Classifier-Based Contrastive Explanations [5.381004207943597]
我々は,ブラックボックスの分類を正当化する対照的な説明を提供する,ポストホックモデルXAI手法を提案する。
CLIMAXと呼ばれる手法は,局所的な分類法に基づく。
LIME, BayLIME, SLIMEなどのベースラインと比較して, 一貫性が向上することを示す。
論文 参考訳(メタデータ) (2023-07-02T22:52:58Z) - Understanding Post-hoc Explainers: The Case of Anchors [6.681943980068051]
本稿では,テキストの判断を説明するために,少数の単語群をハイライトする規則に基づく解釈可能性法の理論解析を行う。
アルゴリズムを定式化し有用な洞察を提供した後、数学的にアンカーが有意義な結果をもたらすことを示す。
論文 参考訳(メタデータ) (2023-03-15T17:56:34Z) - VCNet: A self-explaining model for realistic counterfactual generation [52.77024349608834]
事実的説明は、機械学習の決定を局所的に説明するための手法のクラスである。
本稿では,予測器と対実生成器を組み合わせたモデルアーキテクチャであるVCNet-Variational Counter Netを提案する。
我々はVCNetが予測を生成でき、また、別の最小化問題を解くことなく、反現実的な説明を生成できることを示した。
論文 参考訳(メタデータ) (2022-12-21T08:45:32Z) - On Computing Probabilistic Abductive Explanations [30.325691263226968]
最も広く研究されているAI(XAI)アプローチは正しくない。
PI説明は重要な欠点も示しており、最も目に見えるものはおそらくその大きさである。
本稿では,多くの広く使用されている分類器に対して,関連する集合を計算するための実践的アプローチについて検討する。
論文 参考訳(メタデータ) (2022-12-12T15:47:10Z) - Don't Explain Noise: Robust Counterfactuals for Randomized Ensembles [50.81061839052459]
我々は確率論的問題として、堅牢な対実的説明の生成を定式化する。
アンサンブルモデルのロバスト性とベース学習者のロバスト性との関係を示す。
本手法は, 反実的説明から初期観測までの距離をわずかに増加させるだけで, 高いロバスト性を実現する。
論文 参考訳(メタデータ) (2022-05-27T17:28:54Z) - Explaining Reject Options of Learning Vector Quantization Classifiers [6.125017875330933]
本稿では,機械学習モデルにおけるリジェクトの説明に反事実的説明を用いることを提案する。
重要なモデルのクラスに対して、異なる拒絶オプションの反実的説明を効率的に計算する方法を検討する。
論文 参考訳(メタデータ) (2022-02-15T08:16:10Z) - Search Methods for Sufficient, Socially-Aligned Feature Importance
Explanations with In-Distribution Counterfactuals [72.00815192668193]
特徴重要度(FI)推定は一般的な説明形式であり、テスト時に特定の入力特徴を除去することによって生じるモデル信頼度の変化を計算し、評価することが一般的である。
FIに基づく説明の未探索次元についていくつかの考察を行い、この説明形式に対する概念的および実証的な改善を提供する。
論文 参考訳(メタデータ) (2021-06-01T20:36:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。