Skull-to-Face: Anatomy-Guided 3D Facial Reconstruction and Editing
- URL: http://arxiv.org/abs/2403.16207v1
- Date: Sun, 24 Mar 2024 16:03:27 GMT
- Title: Skull-to-Face: Anatomy-Guided 3D Facial Reconstruction and Editing
- Authors: Yongqing Liang, Congyi Zhang, Junli Zhao, Wenping Wang, Xin Li,
- Abstract summary: This paper proposes an end-to-end 3D face reconstruction and exploration tool.
We generate an initial reference 3D face, whose biological profile aligns with the given skull.
We then adapt these initial faces to meet the statistical expectations of extruded anatomical landmarks on the skull.
- Score: 34.39385635485985
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deducing the 3D face from a skull is an essential but challenging task in forensic science and archaeology. Existing methods for automated facial reconstruction yield inaccurate results, suffering from the non-determinative nature of the problem that a skull with a sparse set of tissue depth cannot fully determine the skinned face. Additionally, their texture-less results require further post-processing stages to achieve a photo-realistic appearance. This paper proposes an end-to-end 3D face reconstruction and exploration tool, providing textured 3D faces for reference. With the help of state-of-the-art text-to-image diffusion models and image-based facial reconstruction techniques, we generate an initial reference 3D face, whose biological profile aligns with the given skull. We then adapt these initial faces to meet the statistical expectations of extruded anatomical landmarks on the skull through an optimization process. The joint statistical distribution of tissue depths is learned on a small set of anatomical landmarks on the skull. To support further adjustment, we propose an efficient face adaptation tool to assist users in tuning tissue depths, either globally or at local regions, while observing plausible visual feedback. Experiments conducted on a real skull-face dataset demonstrated the effectiveness of our proposed pipeline in terms of reconstruction accuracy, diversity, and stability.
Related papers
- EndoSparse: Real-Time Sparse View Synthesis of Endoscopic Scenes using Gaussian Splatting [39.60431471170721]
3D reconstruction of biological tissues from a collection of endoscopic images is a key to unlock various important downstream surgical applications with 3D capabilities.
Existing methods employ various advanced neural rendering techniques for view synthesis, but they often struggle to recover accurate 3D representations when only sparse observations are available.
We propose a framework leveraging the prior knowledge from multiple foundation models during the reconstruction process, dubbed as textitEndoSparse.
arXiv Detail & Related papers (2024-07-01T07:24:09Z) - High-fidelity Endoscopic Image Synthesis by Utilizing Depth-guided Neural Surfaces [18.948630080040576]
We introduce a novel method for colon section reconstruction by leveraging NeuS applied to endoscopic images, supplemented by a single frame of depth map.
Our approach demonstrates exceptional accuracy in completely rendering colon sections, even capturing unseen portions of the surface.
This breakthrough opens avenues for achieving stable and consistently scaled reconstructions, promising enhanced quality in cancer screening procedures and treatment interventions.
arXiv Detail & Related papers (2024-04-20T18:06:26Z) - 3D Facial Imperfection Regeneration: Deep learning approach and 3D
printing prototypes [0.0]
This study explores the potential of a fully convolutional mesh autoencoder model for regenerating 3D nature faces with the presence of imperfect areas.
We utilize deep learning approaches in graph processing and analysis to investigate the capabilities model in recreating a filling part for facial scars.
arXiv Detail & Related papers (2023-03-25T07:12:33Z) - SCULPTOR: Skeleton-Consistent Face Creation Using a Learned Parametric
Generator [42.25745590793068]
We present SCULPTOR, 3D face creations with Skeleton Consistency Using a Learned Parametric facial generaTOR.
At the core of SCULPTOR is LUCY, the first large-scale shape-skeleton face dataset in collaboration with plastic surgeons.
arXiv Detail & Related papers (2022-09-14T05:21:20Z) - AvatarMe++: Facial Shape and BRDF Inference with Photorealistic
Rendering-Aware GANs [119.23922747230193]
We introduce the first method that is able to reconstruct render-ready 3D facial geometry and BRDF from a single "in-the-wild" image.
Our method outperforms the existing arts by a significant margin and reconstructs high-resolution 3D faces from a single low-resolution image.
arXiv Detail & Related papers (2021-12-11T11:36:30Z) - Fast-GANFIT: Generative Adversarial Network for High Fidelity 3D Face
Reconstruction [76.1612334630256]
We harness the power of Generative Adversarial Networks (GANs) and Deep Convolutional Neural Networks (DCNNs) to reconstruct the facial texture and shape from single images.
We demonstrate excellent results in photorealistic and identity preserving 3D face reconstructions and achieve for the first time, facial texture reconstruction with high-frequency details.
arXiv Detail & Related papers (2021-05-16T16:35:44Z) - Inverting Generative Adversarial Renderer for Face Reconstruction [58.45125455811038]
In this work, we introduce a novel Generative Adversa Renderer (GAR)
GAR learns to model the complicated real-world image, instead of relying on the graphics rules, it is capable of producing realistic images.
Our method achieves state-of-the-art performances on multiple face reconstruction.
arXiv Detail & Related papers (2021-05-06T04:16:06Z) - Face Forgery Detection by 3D Decomposition [72.22610063489248]
We consider a face image as the production of the intervention of the underlying 3D geometry and the lighting environment.
By disentangling the face image into 3D shape, common texture, identity texture, ambient light, and direct light, we find the devil lies in the direct light and the identity texture.
We propose to utilize facial detail, which is the combination of direct light and identity texture, as the clue to detect the subtle forgery patterns.
arXiv Detail & Related papers (2020-11-19T09:25:44Z) - 3D Dense Geometry-Guided Facial Expression Synthesis by Adversarial
Learning [54.24887282693925]
We propose a novel framework to exploit 3D dense (depth and surface normals) information for expression manipulation.
We use an off-the-shelf state-of-the-art 3D reconstruction model to estimate the depth and create a large-scale RGB-Depth dataset.
Our experiments demonstrate that the proposed method outperforms the competitive baseline and existing arts by a large margin.
arXiv Detail & Related papers (2020-09-30T17:12:35Z) - Face Super-Resolution Guided by 3D Facial Priors [92.23902886737832]
We propose a novel face super-resolution method that explicitly incorporates 3D facial priors which grasp the sharp facial structures.
Our work is the first to explore 3D morphable knowledge based on the fusion of parametric descriptions of face attributes.
The proposed 3D priors achieve superior face super-resolution results over the state-of-the-arts.
arXiv Detail & Related papers (2020-07-18T15:26:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.