Exemplar-Free Class Incremental Learning via Incremental Representation
- URL: http://arxiv.org/abs/2403.16221v1
- Date: Sun, 24 Mar 2024 16:29:50 GMT
- Title: Exemplar-Free Class Incremental Learning via Incremental Representation
- Authors: Libo Huang, Zhulin An, Yan Zeng, Chuanguang Yang, Xinqiang Yu, Yongjun Xu,
- Abstract summary: We propose a textbfsimple Incremental Representation (IR) framework for efCIL without constructing old pseudo-features.
IR utilizes dataset augmentation to cover a suitable feature space and prevents the model from forgetting by using a single L2 space maintenance loss.
- Score: 26.759108983223115
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Exemplar-Free Class Incremental Learning (efCIL) aims to continuously incorporate the knowledge from new classes while retaining previously learned information, without storing any old-class exemplars (i.e., samples). For this purpose, various efCIL methods have been proposed over the past few years, generally with elaborately constructed old pseudo-features, increasing the difficulty of model development and interpretation. In contrast, we propose a \textbf{simple Incremental Representation (IR) framework} for efCIL without constructing old pseudo-features. IR utilizes dataset augmentation to cover a suitable feature space and prevents the model from forgetting by using a single L2 space maintenance loss. We discard the transient classifier trained on each one of the sequence tasks and instead replace it with a 1-near-neighbor classifier for inference, ensuring the representation is incrementally updated during CIL. Extensive experiments demonstrate that our proposed IR achieves comparable performance while significantly preventing the model from forgetting on CIFAR100, TinyImageNet, and ImageNetSubset datasets.
Related papers
- Efficient Non-Exemplar Class-Incremental Learning with Retrospective Feature Synthesis [21.348252135252412]
Current Non-Exemplar Class-Incremental Learning (NECIL) methods mitigate forgetting by storing a single prototype per class.
We propose a more efficient NECIL method that replaces prototypes with synthesized retrospective features for old classes.
Our method significantly improves the efficiency of non-exemplar class-incremental learning and achieves state-of-the-art performance.
arXiv Detail & Related papers (2024-11-03T07:19:11Z) - PASS++: A Dual Bias Reduction Framework for Non-Exemplar Class-Incremental Learning [49.240408681098906]
Class-incremental learning (CIL) aims to recognize new classes incrementally while maintaining the discriminability of old classes.
Most existing CIL methods are exemplar-based, i.e., storing a part of old data for retraining.
We present a simple and novel dual bias reduction framework that employs self-supervised transformation (SST) in input space and prototype augmentation (protoAug) in deep feature space.
arXiv Detail & Related papers (2024-07-19T05:03:16Z) - CEAT: Continual Expansion and Absorption Transformer for Non-Exemplar
Class-Incremental Learning [34.59310641291726]
In real-world applications, dynamic scenarios require the models to possess the capability to learn new tasks continuously without forgetting the old knowledge.
We propose a new architecture, named continual expansion and absorption transformer(CEAT)
The model can learn the novel knowledge by extending the expanded-fusion layers in parallel with the frozen previous parameters.
To improve the learning ability of the model, we designed a novel prototype contrastive loss to reduce the overlap between old and new classes in the feature space.
arXiv Detail & Related papers (2024-03-11T12:40:12Z) - Enhancing Consistency and Mitigating Bias: A Data Replay Approach for
Incremental Learning [100.7407460674153]
Deep learning systems are prone to catastrophic forgetting when learning from a sequence of tasks.
To mitigate the problem, a line of methods propose to replay the data of experienced tasks when learning new tasks.
However, it is not expected in practice considering the memory constraint or data privacy issue.
As a replacement, data-free data replay methods are proposed by inverting samples from the classification model.
arXiv Detail & Related papers (2024-01-12T12:51:12Z) - Learning Prompt with Distribution-Based Feature Replay for Few-Shot Class-Incremental Learning [56.29097276129473]
We propose a simple yet effective framework, named Learning Prompt with Distribution-based Feature Replay (LP-DiF)
To prevent the learnable prompt from forgetting old knowledge in the new session, we propose a pseudo-feature replay approach.
When progressing to a new session, pseudo-features are sampled from old-class distributions combined with training images of the current session to optimize the prompt.
arXiv Detail & Related papers (2024-01-03T07:59:17Z) - FeCAM: Exploiting the Heterogeneity of Class Distributions in
Exemplar-Free Continual Learning [21.088762527081883]
Exemplar-free class-incremental learning (CIL) poses several challenges since it prohibits the rehearsal of data from previous tasks.
Recent approaches to incrementally learning the classifier by freezing the feature extractor after the first task have gained much attention.
We explore prototypical networks for CIL, which generate new class prototypes using the frozen feature extractor and classify the features based on the Euclidean distance to the prototypes.
arXiv Detail & Related papers (2023-09-25T11:54:33Z) - Self-Supervised Class Incremental Learning [51.62542103481908]
Existing Class Incremental Learning (CIL) methods are based on a supervised classification framework sensitive to data labels.
When updating them based on the new class data, they suffer from catastrophic forgetting: the model cannot discern old class data clearly from the new.
In this paper, we explore the performance of Self-Supervised representation learning in Class Incremental Learning (SSCIL) for the first time.
arXiv Detail & Related papers (2021-11-18T06:58:19Z) - IB-DRR: Incremental Learning with Information-Back Discrete
Representation Replay [4.8666876477091865]
Incremental learning aims to enable machine learning models to continuously acquire new knowledge given new classes.
Saving a subset of training samples of previously seen classes in the memory and replaying them during new training phases is proven to be an efficient and effective way to fulfil this aim.
However, finding a trade-off between the model performance and the number of samples to save for each class is still an open problem for replay-based incremental learning.
arXiv Detail & Related papers (2021-04-21T15:32:11Z) - Improving Calibration for Long-Tailed Recognition [68.32848696795519]
We propose two methods to improve calibration and performance in such scenarios.
For dataset bias due to different samplers, we propose shifted batch normalization.
Our proposed methods set new records on multiple popular long-tailed recognition benchmark datasets.
arXiv Detail & Related papers (2021-04-01T13:55:21Z) - Contrastive Prototype Learning with Augmented Embeddings for Few-Shot
Learning [58.2091760793799]
We propose a novel contrastive prototype learning with augmented embeddings (CPLAE) model.
With a class prototype as an anchor, CPL aims to pull the query samples of the same class closer and those of different classes further away.
Extensive experiments on several benchmarks demonstrate that our proposed CPLAE achieves new state-of-the-art.
arXiv Detail & Related papers (2021-01-23T13:22:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.