CEAT: Continual Expansion and Absorption Transformer for Non-Exemplar
Class-Incremental Learning
- URL: http://arxiv.org/abs/2403.06670v2
- Date: Tue, 12 Mar 2024 03:04:15 GMT
- Title: CEAT: Continual Expansion and Absorption Transformer for Non-Exemplar
Class-Incremental Learning
- Authors: Xinyuan Gao, Songlin Dong, Yuhang He, Xing Wei, Yihong Gong
- Abstract summary: In real-world applications, dynamic scenarios require the models to possess the capability to learn new tasks continuously without forgetting the old knowledge.
We propose a new architecture, named continual expansion and absorption transformer(CEAT)
The model can learn the novel knowledge by extending the expanded-fusion layers in parallel with the frozen previous parameters.
To improve the learning ability of the model, we designed a novel prototype contrastive loss to reduce the overlap between old and new classes in the feature space.
- Score: 34.59310641291726
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In real-world applications, dynamic scenarios require the models to possess
the capability to learn new tasks continuously without forgetting the old
knowledge. Experience-Replay methods store a subset of the old images for joint
training. In the scenario of more strict privacy protection, storing the old
images becomes infeasible, which leads to a more severe plasticity-stability
dilemma and classifier bias. To meet the above challenges, we propose a new
architecture, named continual expansion and absorption transformer~(CEAT). The
model can learn the novel knowledge by extending the expanded-fusion layers in
parallel with the frozen previous parameters. After the task ends, we
losslessly absorb the extended parameters into the backbone to ensure that the
number of parameters remains constant. To improve the learning ability of the
model, we designed a novel prototype contrastive loss to reduce the overlap
between old and new classes in the feature space. Besides, to address the
classifier bias towards the new classes, we propose a novel approach to
generate the pseudo-features to correct the classifier. We experiment with our
methods on three standard Non-Exemplar Class-Incremental Learning~(NECIL)
benchmarks. Extensive experiments demonstrate that our model gets a significant
improvement compared with the previous works and achieves 5.38%, 5.20%, and
4.92% improvement on CIFAR-100, TinyImageNet, and ImageNet-Subset.
Related papers
- Efficient Non-Exemplar Class-Incremental Learning with Retrospective Feature Synthesis [21.348252135252412]
Current Non-Exemplar Class-Incremental Learning (NECIL) methods mitigate forgetting by storing a single prototype per class.
We propose a more efficient NECIL method that replaces prototypes with synthesized retrospective features for old classes.
Our method significantly improves the efficiency of non-exemplar class-incremental learning and achieves state-of-the-art performance.
arXiv Detail & Related papers (2024-11-03T07:19:11Z) - Mamba-FSCIL: Dynamic Adaptation with Selective State Space Model for Few-Shot Class-Incremental Learning [113.89327264634984]
Few-shot class-incremental learning (FSCIL) confronts the challenge of integrating new classes into a model with minimal training samples.
Traditional methods widely adopt static adaptation relying on a fixed parameter space to learn from data that arrive sequentially.
We propose a dual selective SSM projector that dynamically adjusts the projection parameters based on the intermediate features for dynamic adaptation.
arXiv Detail & Related papers (2024-07-08T17:09:39Z) - Exemplar-Free Class Incremental Learning via Incremental Representation [26.759108983223115]
We propose a textbfsimple Incremental Representation (IR) framework for efCIL without constructing old pseudo-features.
IR utilizes dataset augmentation to cover a suitable feature space and prevents the model from forgetting by using a single L2 space maintenance loss.
arXiv Detail & Related papers (2024-03-24T16:29:50Z) - Expandable Subspace Ensemble for Pre-Trained Model-Based Class-Incremental Learning [65.57123249246358]
We propose ExpAndable Subspace Ensemble (EASE) for PTM-based CIL.
We train a distinct lightweight adapter module for each new task, aiming to create task-specific subspaces.
Our prototype complement strategy synthesizes old classes' new features without using any old class instance.
arXiv Detail & Related papers (2024-03-18T17:58:13Z) - Learning Prompt with Distribution-Based Feature Replay for Few-Shot Class-Incremental Learning [56.29097276129473]
We propose a simple yet effective framework, named Learning Prompt with Distribution-based Feature Replay (LP-DiF)
To prevent the learnable prompt from forgetting old knowledge in the new session, we propose a pseudo-feature replay approach.
When progressing to a new session, pseudo-features are sampled from old-class distributions combined with training images of the current session to optimize the prompt.
arXiv Detail & Related papers (2024-01-03T07:59:17Z) - Class Incremental Learning with Pre-trained Vision-Language Models [59.15538370859431]
We propose an approach to exploiting pre-trained vision-language models (e.g. CLIP) that enables further adaptation.
Experiments on several conventional benchmarks consistently show a significant margin of improvement over the current state-of-the-art.
arXiv Detail & Related papers (2023-10-31T10:45:03Z) - RanPAC: Random Projections and Pre-trained Models for Continual Learning [59.07316955610658]
Continual learning (CL) aims to learn different tasks (such as classification) in a non-stationary data stream without forgetting old ones.
We propose a concise and effective approach for CL with pre-trained models.
arXiv Detail & Related papers (2023-07-05T12:49:02Z) - Non-exemplar Class-incremental Learning by Random Auxiliary Classes
Augmentation and Mixed Features [37.51376572211081]
Non-exemplar class-incremental learning refers to classifying new and old classes without storing samples of old classes.
We propose an effective non-exemplar method called RAMF consisting of Random Auxiliary classes augmentation and Mixed Feature.
arXiv Detail & Related papers (2023-04-16T06:33:43Z) - FOSTER: Feature Boosting and Compression for Class-Incremental Learning [52.603520403933985]
Deep neural networks suffer from catastrophic forgetting when learning new categories.
We propose a novel two-stage learning paradigm FOSTER, empowering the model to learn new categories adaptively.
arXiv Detail & Related papers (2022-04-10T11:38:33Z) - ZS-IL: Looking Back on Learned ExperiencesFor Zero-Shot Incremental
Learning [9.530976792843495]
We propose an on-call transfer set to provide past experiences whenever a new class arises in the data stream.
ZS-IL demonstrates significantly better performance on the well-known datasets (CIFAR-10, Tiny-ImageNet) in both Task-IL and Class-IL settings.
arXiv Detail & Related papers (2021-03-22T22:43:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.