論文の概要: Partially Blinded Unlearning: Class Unlearning for Deep Networks a Bayesian Perspective
- arxiv url: http://arxiv.org/abs/2403.16246v1
- Date: Sun, 24 Mar 2024 17:33:22 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-26 16:46:40.357869
- Title: Partially Blinded Unlearning: Class Unlearning for Deep Networks a Bayesian Perspective
- Title(参考訳): 部分的盲点未学習:ベイズ的視点によるディープ・ネットワークのための授業未学習
- Authors: Subhodip Panda, Shashwat Sourav, Prathosh A. P,
- Abstract要約: マシン・アンラーニング(英: Machine Unlearning)とは、特定のデータセットやクラスに指定された情報を事前訓練されたモデルから選択的に破棄するプロセスである。
本研究では,事前学習した分類ネットワークから,特定の種類のデータに関連付けられた情報の目的的除去に適した手法を提案する。
本手法は,従来の最先端の未学習手法を超越し,優れた有効性を示す。
- 参考スコア(独自算出の注目度): 4.31734012105466
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In order to adhere to regulatory standards governing individual data privacy and safety, machine learning models must systematically eliminate information derived from specific subsets of a user's training data that can no longer be utilized. The emerging discipline of Machine Unlearning has arisen as a pivotal area of research, facilitating the process of selectively discarding information designated to specific sets or classes of data from a pre-trained model, thereby eliminating the necessity for extensive retraining from scratch. The principal aim of this study is to formulate a methodology tailored for the purposeful elimination of information linked to a specific class of data from a pre-trained classification network. This intentional removal is crafted to degrade the model's performance specifically concerning the unlearned data class while concurrently minimizing any detrimental impacts on the model's performance in other classes. To achieve this goal, we frame the class unlearning problem from a Bayesian perspective, which yields a loss function that minimizes the log-likelihood associated with the unlearned data with a stability regularization in parameter space. This stability regularization incorporates Mohalanobis distance with respect to the Fisher Information matrix and $l_2$ distance from the pre-trained model parameters. Our novel approach, termed \textbf{Partially-Blinded Unlearning (PBU)}, surpasses existing state-of-the-art class unlearning methods, demonstrating superior effectiveness. Notably, PBU achieves this efficacy without requiring awareness of the entire training dataset but only to the unlearned data points, marking a distinctive feature of its performance.
- Abstract(参考訳): 個々のデータのプライバシと安全性を管理する規制基準に従うために、機械学習モデルは、もはや利用できないユーザーのトレーニングデータの特定のサブセットから派生した情報を体系的に排除する必要がある。
マシン・アンラーニング(Machine Unlearning)の新たな分野は、特定のデータセットやクラスのデータに指定された情報を、事前訓練されたモデルから選択的に排除し、スクラッチから広範なリトレーニングの必要性を排除し、研究の重要な領域として生まれてきた。
本研究の主な目的は,事前学習した分類ネットワークから,特定の種類のデータに関連付けられた情報を意図的に除去するための方法論を定式化することである。
この意図的な除去は、未学習のデータクラスに関するモデルの性能を低下させると同時に、他のクラスにおけるモデルのパフォーマンスに対する有害な影響を同時に最小化するために行われる。
この目的を達成するために,パラメータ空間における安定正規化を伴う未学習データに付随するログ類似度を最小化する損失関数をベイズ的視点からクラス未学習問題に設定する。
この安定正規化は、フィッシャー情報行列に対するモハラノビス距離と、事前訓練されたモデルパラメータからの$l_2$距離を含む。
我々の新しいアプローチは、既存の最先端の未学習手法を超越し、優れた効果を示す。
特に、PBUはトレーニングデータセット全体の認識を必要とせずに、未学習のデータポイントのみにこの効果を達成し、そのパフォーマンスの特徴的な特徴を示す。
関連論文リスト
- Attribute-to-Delete: Machine Unlearning via Datamodel Matching [65.13151619119782]
機械学習 -- 事前訓練された機械学習モデルで、小さな"ターゲットセット"トレーニングデータを効率的に削除する -- は、最近関心を集めている。
最近の研究では、機械学習技術はこのような困難な環境では耐えられないことが示されている。
論文 参考訳(メタデータ) (2024-10-30T17:20:10Z) - Silver Linings in the Shadows: Harnessing Membership Inference for Machine Unlearning [7.557226714828334]
ニューラルネットワークから特定のデータサンプルの影響を除去する新しい学習機構を提案する。
この目的を達成するために、我々は、ターゲットモデルの重みやアクティベーション値からプライバシーに敏感な情報を排除するための、新しい損失関数を構築した。
本研究の結果は,未学習の有効性とレイテンシ,および主課題の忠実度の観点から,我々のアプローチの優れた性能を示すものである。
論文 参考訳(メタデータ) (2024-07-01T00:20:26Z) - The Frontier of Data Erasure: Machine Unlearning for Large Language Models [56.26002631481726]
大規模言語モデル(LLM)はAIの進歩の基礎となっている。
LLMは機密情報、偏見情報、著作権情報を記憶し、広めることによってリスクを生じさせる。
機械学習は、これらの懸念を軽減するための最先端のソリューションとして現れます。
論文 参考訳(メタデータ) (2024-03-23T09:26:15Z) - An Information Theoretic Approach to Machine Unlearning [45.600917449314444]
学びの鍵となる課題は、モデルのパフォーマンスを保ちながら、必要なデータをタイムリーに忘れることである。
この研究では、ゼロショットのアンラーニングシナリオに対処し、未学習のアルゴリズムは、トレーニングされたモデルと忘れられるデータだけが与えられたデータを削除できなければならない。
モデルの幾何に基づいて、単純だが原則化されたゼロショットアンラーニング法を導出する。
論文 参考訳(メタデータ) (2024-02-02T13:33:30Z) - Machine unlearning through fine-grained model parameters perturbation [26.653596302257057]
そこで本研究では,不エクササイズマシンの非学習戦略であるTop-KパラメータとRandom-kパラメータの微粒化を提案する。
また,機械学習の有効性を評価する上での課題にも取り組む。
論文 参考訳(メタデータ) (2024-01-09T07:14:45Z) - Learn to Unlearn for Deep Neural Networks: Minimizing Unlearning
Interference with Gradient Projection [56.292071534857946]
最近のデータプライバシ法は、機械学習への関心を喚起している。
課題は、残りのデータセットに関する知識を変更することなく、忘れたデータに関する情報を捨てることである。
我々は、プロジェクテッド・グラディエント・アンラーニング(PGU)という、プロジェクテッド・グラディエント・ベースの学習手法を採用する。
トレーニングデータセットがもはやアクセスできない場合でも、スクラッチからスクラッチで再トレーニングされたモデルと同じような振る舞いをするモデルを、我々のアンラーニング手法が生成できることを実証するための実証的な証拠を提供する。
論文 参考訳(メタデータ) (2023-12-07T07:17:24Z) - Complementary Learning Subnetworks for Parameter-Efficient
Class-Incremental Learning [40.13416912075668]
本稿では,2つの補完学習サブネットワークス間のシナジーを通じて連続的に学習するリハーサルフリーなCILアプローチを提案する。
提案手法は, 精度向上, メモリコスト, トレーニング効率, タスク順序など, 最先端手法と競合する結果が得られる。
論文 参考訳(メタデータ) (2023-06-21T01:43:25Z) - Learning to Unlearn: Instance-wise Unlearning for Pre-trained
Classifiers [71.70205894168039]
そこでは、事前訓練されたモデルからインスタンスのセットに関する情報を削除することを目標としています。
本稿では,1)表現レベルでの忘れを克服するために,敵の例を活用すること,2)不必要な情報を伝播するネットワークパラメータをピンポイントする重み付け指標を活用すること,の2つの方法を提案する。
論文 参考訳(メタデータ) (2023-01-27T07:53:50Z) - CMW-Net: Learning a Class-Aware Sample Weighting Mapping for Robust Deep
Learning [55.733193075728096]
現代のディープニューラルネットワークは、破損したラベルやクラス不均衡を含むバイアス付きトレーニングデータに容易に適合する。
サンプル再重み付け手法は、このデータバイアス問題を緩和するために一般的に使用されている。
本稿では,データから直接明示的な重み付け方式を適応的に学習できるメタモデルを提案する。
論文 参考訳(メタデータ) (2022-02-11T13:49:51Z) - Machine Unlearning of Features and Labels [72.81914952849334]
機械学習モデルにおけるアンラーニングとラベルのファーストシナリオを提案する。
提案手法は,影響関数の概念に基づいて,モデルパラメータのクローズドフォーム更新によるアンラーニングを実現する。
論文 参考訳(メタデータ) (2021-08-26T04:42:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。