Laplacian-guided Entropy Model in Neural Codec with Blur-dissipated Synthesis
- URL: http://arxiv.org/abs/2403.16258v1
- Date: Sun, 24 Mar 2024 18:33:16 GMT
- Title: Laplacian-guided Entropy Model in Neural Codec with Blur-dissipated Synthesis
- Authors: Atefeh Khoshkhahtinat, Ali Zafari, Piyush M. Mehta, Nasser M. Nasrabadi,
- Abstract summary: We replace Gaussian decoders with a non-isotropic diffusion model at the decoder side.
Our framework is equipped with a novel entropy model that accurately models probability distribution latent representation.
Our experiments demonstrate that our framework yields better perceptual quality compared to cutting-edge generative entropy-based codecs.
- Score: 10.428185253933004
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: While replacing Gaussian decoders with a conditional diffusion model enhances the perceptual quality of reconstructions in neural image compression, their lack of inductive bias for image data restricts their ability to achieve state-of-the-art perceptual levels. To address this limitation, we adopt a non-isotropic diffusion model at the decoder side. This model imposes an inductive bias aimed at distinguishing between frequency contents, thereby facilitating the generation of high-quality images. Moreover, our framework is equipped with a novel entropy model that accurately models the probability distribution of latent representation by exploiting spatio-channel correlations in latent space, while accelerating the entropy decoding step. This channel-wise entropy model leverages both local and global spatial contexts within each channel chunk. The global spatial context is built upon the Transformer, which is specifically designed for image compression tasks. The designed Transformer employs a Laplacian-shaped positional encoding, the learnable parameters of which are adaptively adjusted for each channel cluster. Our experiments demonstrate that our proposed framework yields better perceptual quality compared to cutting-edge generative-based codecs, and the proposed entropy model contributes to notable bitrate savings.
Related papers
- Correcting Diffusion-Based Perceptual Image Compression with Privileged End-to-End Decoder [49.01721042973929]
This paper presents a diffusion-based image compression method that employs a privileged end-to-end decoder model as correction.
Experiments demonstrate the superiority of our method in both distortion and perception compared with previous perceptual compression methods.
arXiv Detail & Related papers (2024-04-07T10:57:54Z) - Multi-Context Dual Hyper-Prior Neural Image Compression [10.349258638494137]
We propose a Transformer-based nonlinear transform to efficiently capture both local and global information from the input image.
We also introduce a novel entropy model that incorporates two different hyperpriors to model cross-channel and spatial dependencies of the latent representation.
Our experiments show that our proposed framework performs better than the state-of-the-art methods in terms of rate-distortion performance.
arXiv Detail & Related papers (2023-09-19T17:44:44Z) - Dynamic Kernel-Based Adaptive Spatial Aggregation for Learned Image
Compression [63.56922682378755]
We focus on extending spatial aggregation capability and propose a dynamic kernel-based transform coding.
The proposed adaptive aggregation generates kernel offsets to capture valid information in the content-conditioned range to help transform.
Experimental results demonstrate that our method achieves superior rate-distortion performance on three benchmarks compared to the state-of-the-art learning-based methods.
arXiv Detail & Related papers (2023-08-17T01:34:51Z) - Frequency Disentangled Features in Neural Image Compression [13.016298207860974]
A neural image compression network is governed by how well the entropy model matches the true distribution of the latent code.
In this paper, we propose a feature-level frequency disentanglement to help the relaxed scalar quantization achieve lower bit rates.
The proposed network not only outperforms hand-engineered codecs, but also neural network-based codecs built on-heavy spatially autoregressive entropy models.
arXiv Detail & Related papers (2023-08-04T14:55:44Z) - Complexity Matters: Rethinking the Latent Space for Generative Modeling [65.64763873078114]
In generative modeling, numerous successful approaches leverage a low-dimensional latent space, e.g., Stable Diffusion.
In this study, we aim to shed light on this under-explored topic by rethinking the latent space from the perspective of model complexity.
arXiv Detail & Related papers (2023-07-17T07:12:29Z) - Reflected Diffusion Models [93.26107023470979]
We present Reflected Diffusion Models, which reverse a reflected differential equation evolving on the support of the data.
Our approach learns the score function through a generalized score matching loss and extends key components of standard diffusion models.
arXiv Detail & Related papers (2023-04-10T17:54:38Z) - CSformer: Bridging Convolution and Transformer for Compressive Sensing [65.22377493627687]
This paper proposes a hybrid framework that integrates the advantages of leveraging detailed spatial information from CNN and the global context provided by transformer for enhanced representation learning.
The proposed approach is an end-to-end compressive image sensing method, composed of adaptive sampling and recovery.
The experimental results demonstrate the effectiveness of the dedicated transformer-based architecture for compressive sensing.
arXiv Detail & Related papers (2021-12-31T04:37:11Z) - Causal Contextual Prediction for Learned Image Compression [36.08393281509613]
We propose the concept of separate entropy coding to leverage a serial decoding process for causal contextual entropy prediction in the latent space.
A causal context model is proposed that separates the latents across channels and makes use of cross-channel relationships to generate highly informative contexts.
We also propose a causal global prediction model, which is able to find global reference points for accurate predictions of unknown points.
arXiv Detail & Related papers (2020-11-19T08:15:10Z) - Learning Context-Based Non-local Entropy Modeling for Image Compression [140.64888994506313]
In this paper, we propose a non-local operation for context modeling by employing the global similarity within the context.
The entropy model is further adopted as the rate loss in a joint rate-distortion optimization.
Considering that the width of the transforms is essential in training low distortion models, we finally produce a U-Net block in the transforms to increase the width with manageable memory consumption and time complexity.
arXiv Detail & Related papers (2020-05-10T13:28:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.