Artificial Neural Microcircuits as Building Blocks: Concept and Challenges
- URL: http://arxiv.org/abs/2403.16327v1
- Date: Sun, 24 Mar 2024 23:22:02 GMT
- Title: Artificial Neural Microcircuits as Building Blocks: Concept and Challenges
- Authors: Andrew Walter, Shimeng Wu, Andy M. Tyrrell, Liam McDaid, Malachy McElholm, Nidhin Thandassery Sumithran, Jim Harkin, Martin A. Trefzer,
- Abstract summary: How large neural networks, particularly Spiking Neural Networks (SNNs) can be assembled using Artificial Neural Microcircuits (ANMs)
The results of initial work to produce a catalogue of such Microcircuits though the use of Novelty Search is shown.
- Score: 1.0061110876649197
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Artificial Neural Networks (ANNs) are one of the most widely employed forms of bio-inspired computation. However the current trend is for ANNs to be structurally homogeneous. Furthermore, this structural homogeneity requires the application of complex training and learning tools that produce application specific ANNs, susceptible to pitfalls such as overfitting. In this paper, an new approach is explored, inspired by the role played in biology by Neural Microcircuits, the so called ``fundamental processing elements'' of organic nervous systems. How large neural networks, particularly Spiking Neural Networks (SNNs) can be assembled using Artificial Neural Microcircuits (ANMs), intended as off-the-shelf components, is articulated; the results of initial work to produce a catalogue of such Microcircuits though the use of Novelty Search is shown; followed by efforts to expand upon this initial work, including a discussion of challenges uncovered during these efforts and explorations of methods by which they might be overcome.
Related papers
- Spatial embedding promotes a specific form of modularity with low entropy and heterogeneous spectral dynamics [0.0]
Spatially embedded recurrent neural networks provide a promising avenue to study how modelled constraints shape the combined structural and functional organisation of networks over learning.
We show that it is possible to study these restrictions through entropic measures of the neural weights and eigenspectrum, across both rate and spiking neural networks.
This work deepens our understanding of constrained learning in neural networks, across coding schemes and tasks, where solutions to simultaneous structural and functional objectives must be accomplished in tandem.
arXiv Detail & Related papers (2024-09-26T10:00:05Z) - NeuralCRNs: A Natural Implementation of Learning in Chemical Reaction Networks [0.0]
We present a novel supervised learning framework constructed as a collection of deterministic chemical reaction networks (CRNs)
Unlike prior works, the NeuralCRNs framework is founded on dynamical system-based learning implementations and, thus, results in chemically compatible computations.
arXiv Detail & Related papers (2024-08-18T01:43:26Z) - Brain-Inspired Machine Intelligence: A Survey of
Neurobiologically-Plausible Credit Assignment [65.268245109828]
We examine algorithms for conducting credit assignment in artificial neural networks that are inspired or motivated by neurobiology.
We organize the ever-growing set of brain-inspired learning schemes into six general families and consider these in the context of backpropagation of errors.
The results of this review are meant to encourage future developments in neuro-mimetic systems and their constituent learning processes.
arXiv Detail & Related papers (2023-12-01T05:20:57Z) - How neural networks learn to classify chaotic time series [77.34726150561087]
We study the inner workings of neural networks trained to classify regular-versus-chaotic time series.
We find that the relation between input periodicity and activation periodicity is key for the performance of LKCNN models.
arXiv Detail & Related papers (2023-06-04T08:53:27Z) - Biologically inspired structure learning with reverse knowledge
distillation for spiking neural networks [19.33517163587031]
Spiking neural networks (SNNs) have superb characteristics in sensory information recognition tasks due to their biological plausibility.
The performance of some current spiking-based models is limited by their structures which means either fully connected or too-deep structures bring too much redundancy.
This paper proposes an evolutionary-based structure construction method for constructing more reasonable SNNs.
arXiv Detail & Related papers (2023-04-19T08:41:17Z) - Contrastive-Signal-Dependent Plasticity: Self-Supervised Learning in Spiking Neural Circuits [61.94533459151743]
This work addresses the challenge of designing neurobiologically-motivated schemes for adjusting the synapses of spiking networks.
Our experimental simulations demonstrate a consistent advantage over other biologically-plausible approaches when training recurrent spiking networks.
arXiv Detail & Related papers (2023-03-30T02:40:28Z) - Spiking neural network for nonlinear regression [68.8204255655161]
Spiking neural networks carry the potential for a massive reduction in memory and energy consumption.
They introduce temporal and neuronal sparsity, which can be exploited by next-generation neuromorphic hardware.
A framework for regression using spiking neural networks is proposed.
arXiv Detail & Related papers (2022-10-06T13:04:45Z) - Construction of a spike-based memory using neural-like logic gates based
on Spiking Neural Networks on SpiNNaker [0.0]
This work presents a spiking implementation of a memory, which is one of the most important components in the computer architecture.
The tests were carried out on the SpiNNaker neuromorphic platform and allow to validate the approach used for the construction of the presented blocks.
arXiv Detail & Related papers (2022-06-08T15:22:41Z) - An Artificial Neural Network Functionalized by Evolution [2.0625936401496237]
We propose a hybrid model which combines the tensor calculus of feed-forward neural networks with Pseudo-Darwinian mechanisms.
This allows for finding topologies that are well adapted for elaboration of strategies, control problems or pattern recognition tasks.
In particular, the model can provide adapted topologies at early evolutionary stages, and'structural convergence', which can found applications in robotics, big-data and artificial life.
arXiv Detail & Related papers (2022-05-16T14:49:58Z) - Exploiting Heterogeneity in Operational Neural Networks by Synaptic
Plasticity [87.32169414230822]
Recently proposed network model, Operational Neural Networks (ONNs), can generalize the conventional Convolutional Neural Networks (CNNs)
In this study the focus is drawn on searching the best-possible operator set(s) for the hidden neurons of the network based on the Synaptic Plasticity paradigm that poses the essential learning theory in biological neurons.
Experimental results over highly challenging problems demonstrate that the elite ONNs even with few neurons and layers can achieve a superior learning performance than GIS-based ONNs.
arXiv Detail & Related papers (2020-08-21T19:03:23Z) - Recurrent Neural Network Learning of Performance and Intrinsic
Population Dynamics from Sparse Neural Data [77.92736596690297]
We introduce a novel training strategy that allows learning not only the input-output behavior of an RNN but also its internal network dynamics.
We test the proposed method by training an RNN to simultaneously reproduce internal dynamics and output signals of a physiologically-inspired neural model.
Remarkably, we show that the reproduction of the internal dynamics is successful even when the training algorithm relies on the activities of a small subset of neurons.
arXiv Detail & Related papers (2020-05-05T14:16:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.