Distilling Semantic Priors from SAM to Efficient Image Restoration Models
- URL: http://arxiv.org/abs/2403.16368v2
- Date: Tue, 2 Apr 2024 10:25:07 GMT
- Title: Distilling Semantic Priors from SAM to Efficient Image Restoration Models
- Authors: Quan Zhang, Xiaoyu Liu, Wei Li, Hanting Chen, Junchao Liu, Jie Hu, Zhiwei Xiong, Chun Yuan, Yunhe Wang,
- Abstract summary: In image restoration (IR), leveraging semantic priors from segmentation models has been a common approach to improve performance.
Recent segment anything model (SAM) has emerged as a powerful tool for extracting advanced semantic priors to enhance IR tasks.
We propose a general framework to distill SAM's semantic knowledge to boost exiting IR models without interfering with their inference process.
- Score: 80.83077145948863
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In image restoration (IR), leveraging semantic priors from segmentation models has been a common approach to improve performance. The recent segment anything model (SAM) has emerged as a powerful tool for extracting advanced semantic priors to enhance IR tasks. However, the computational cost of SAM is prohibitive for IR, compared to existing smaller IR models. The incorporation of SAM for extracting semantic priors considerably hampers the model inference efficiency. To address this issue, we propose a general framework to distill SAM's semantic knowledge to boost exiting IR models without interfering with their inference process. Specifically, our proposed framework consists of the semantic priors fusion (SPF) scheme and the semantic priors distillation (SPD) scheme. SPF fuses two kinds of information between the restored image predicted by the original IR model and the semantic mask predicted by SAM for the refined restored image. SPD leverages a self-distillation manner to distill the fused semantic priors to boost the performance of original IR models. Additionally, we design a semantic-guided relation (SGR) module for SPD, which ensures semantic feature representation space consistency to fully distill the priors. We demonstrate the effectiveness of our framework across multiple IR models and tasks, including deraining, deblurring, and denoising.
Related papers
- Unleashing the Potential of the Diffusion Model in Few-shot Semantic Segmentation [56.87049651707208]
Few-shot Semantic has evolved into In-context tasks, morphing into a crucial element in assessing generalist segmentation models.
Our initial focus lies in understanding how to facilitate interaction between the query image and the support image, resulting in the proposal of a KV fusion method within the self-attention framework.
Based on our analysis, we establish a simple and effective framework named DiffewS, maximally retaining the original Latent Diffusion Model's generative framework.
arXiv Detail & Related papers (2024-10-03T10:33:49Z) - JoReS-Diff: Joint Retinex and Semantic Priors in Diffusion Model for Low-light Image Enhancement [69.6035373784027]
Low-light image enhancement (LLIE) has achieved promising performance by employing conditional diffusion models.
Previous methods may neglect the importance of a sufficient formulation of task-specific condition strategy.
We propose JoReS-Diff, a novel approach that incorporates Retinex- and semantic-based priors as the additional pre-processing condition.
arXiv Detail & Related papers (2023-12-20T08:05:57Z) - Consensus-Adaptive RANSAC [104.87576373187426]
We propose a new RANSAC framework that learns to explore the parameter space by considering the residuals seen so far via a novel attention layer.
The attention mechanism operates on a batch of point-to-model residuals, and updates a per-point estimation state to take into account the consensus found through a lightweight one-step transformer.
arXiv Detail & Related papers (2023-07-26T08:25:46Z) - DRM-IR: Task-Adaptive Deep Unfolding Network for All-In-One Image
Restoration [5.573836220587265]
This work proposes an efficient Dynamic Reference Modeling paradigm (DRM-IR)
DRM-IR consists of task-adaptive degradation modeling and model-based image restoring.
Experiments on multiple benchmark datasets show that our DRM-IR achieves state-of-the-art in All-In-One IR.
arXiv Detail & Related papers (2023-07-15T02:42:19Z) - A Dive into SAM Prior in Image Restoration [40.03648504115027]
The goal of image restoration (IR) is to restore a high-quality (HQ) image from its degraded low-quality (LQ) observation.
We propose a lightweight SAM prior tuning (SPT) unit to integrate semantic priors into existing IR networks.
As the only trainable module in our method, the SPT unit has the potential to improve both efficiency and scalability.
arXiv Detail & Related papers (2023-05-23T02:31:06Z) - Complementary Random Masking for RGB-Thermal Semantic Segmentation [63.93784265195356]
RGB-thermal semantic segmentation is a potential solution to achieve reliable semantic scene understanding in adverse weather and lighting conditions.
This paper proposes 1) a complementary random masking strategy of RGB-T images and 2) self-distillation loss between clean and masked input modalities.
We achieve state-of-the-art performance over three RGB-T semantic segmentation benchmarks.
arXiv Detail & Related papers (2023-03-30T13:57:21Z) - Adaptive Diffusion Priors for Accelerated MRI Reconstruction [0.9895793818721335]
Deep MRI reconstruction is commonly performed with conditional models that de-alias undersampled acquisitions to recover images consistent with fully-sampled data.
Unconditional models instead learn generative image priors decoupled from the operator to improve reliability against domain shifts related to the imaging operator.
Here we propose the first adaptive diffusion prior for MRI reconstruction, AdaDiff, to improve performance and reliability against domain shifts.
arXiv Detail & Related papers (2022-07-12T22:45:08Z) - Normalizing Flows with Multi-Scale Autoregressive Priors [131.895570212956]
We introduce channel-wise dependencies in their latent space through multi-scale autoregressive priors (mAR)
Our mAR prior for models with split coupling flow layers (mAR-SCF) can better capture dependencies in complex multimodal data.
We show that mAR-SCF allows for improved image generation quality, with gains in FID and Inception scores compared to state-of-the-art flow-based models.
arXiv Detail & Related papers (2020-04-08T09:07:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.