DRM-IR: Task-Adaptive Deep Unfolding Network for All-In-One Image
Restoration
- URL: http://arxiv.org/abs/2307.07688v2
- Date: Thu, 30 Nov 2023 07:19:34 GMT
- Title: DRM-IR: Task-Adaptive Deep Unfolding Network for All-In-One Image
Restoration
- Authors: Yuanshuo Cheng, Mingwen Shao, Yecong Wan, Chao Wang
- Abstract summary: This work proposes an efficient Dynamic Reference Modeling paradigm (DRM-IR)
DRM-IR consists of task-adaptive degradation modeling and model-based image restoring.
Experiments on multiple benchmark datasets show that our DRM-IR achieves state-of-the-art in All-In-One IR.
- Score: 5.573836220587265
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Existing All-In-One image restoration (IR) methods usually lack flexible
modeling on various types of degradation, thus impeding the restoration
performance. To achieve All-In-One IR with higher task dexterity, this work
proposes an efficient Dynamic Reference Modeling paradigm (DRM-IR), which
consists of task-adaptive degradation modeling and model-based image restoring.
Specifically, these two subtasks are formalized as a pair of entangled
reference-based maximum a posteriori (MAP) inferences, which are optimized
synchronously in an unfolding-based manner. With the two cascaded subtasks,
DRM-IR first dynamically models the task-specific degradation based on a
reference image pair and further restores the image with the collected
degradation statistics. Besides, to bridge the semantic gap between the
reference and target degraded images, we further devise a Degradation Prior
Transmitter (DPT) that restrains the instance-specific feature differences.
DRM-IR explicitly provides superior flexibility for All-in-One IR while being
interpretable. Extensive experiments on multiple benchmark datasets show that
our DRM-IR achieves state-of-the-art in All-In-One IR.
Related papers
- LoRA-IR: Taming Low-Rank Experts for Efficient All-in-One Image Restoration [62.3751291442432]
We propose LoRA-IR, a flexible framework that dynamically leverages compact low-rank experts to facilitate efficient all-in-one image restoration.
LoRA-IR consists of two training stages: degradation-guided pre-training and parameter-efficient fine-tuning.
LoRA-IR achieves state-of-the-art performance across 14 image restoration tasks and 29 benchmarks.
arXiv Detail & Related papers (2024-10-20T13:00:24Z) - Taming Generative Diffusion for Universal Blind Image Restoration [4.106012295148947]
BIR-D is able to fulfill multi-guidance blind image restoration.
It can also restore images that undergo multiple and complicated degradations, demonstrating the practical applications.
arXiv Detail & Related papers (2024-08-21T02:19:54Z) - HAIR: Hypernetworks-based All-in-One Image Restoration [46.681872835394095]
Hair is a Hypernetworks-based All-in-One Image Restoration plug-and-play method.
It generates parameters based on the input image and thus makes the model to adapt to specific degradation dynamically.
It can significantly improve the performance of existing image restoration models in a plug-and-play manner, both in single-task and All-in-One settings.
arXiv Detail & Related papers (2024-08-15T11:34:33Z) - Multi-task Image Restoration Guided By Robust DINO Features [88.74005987908443]
We propose mboxtextbfDINO-IR, a multi-task image restoration approach leveraging robust features extracted from DINOv2.
We first propose a pixel-semantic fusion (PSF) module to dynamically fuse DINOV2's shallow features.
By formulating these modules into a unified deep model, we propose a DINO perception contrastive loss to constrain the model training.
arXiv Detail & Related papers (2023-12-04T06:59:55Z) - Cross-Consistent Deep Unfolding Network for Adaptive All-In-One Video
Restoration [78.14941737723501]
We propose a Cross-consistent Deep Unfolding Network (CDUN) for All-In-One VR.
By orchestrating two cascading procedures, CDUN achieves adaptive processing for diverse degradations.
In addition, we introduce a window-based inter-frame fusion strategy to utilize information from more adjacent frames.
arXiv Detail & Related papers (2023-09-04T14:18:00Z) - Deep Unfolding Convolutional Dictionary Model for Multi-Contrast MRI
Super-resolution and Reconstruction [23.779641808300596]
We propose a multi-contrast convolutional dictionary (MC-CDic) model under the guidance of the optimization algorithm.
We employ the proximal gradient algorithm to optimize the model and unroll the iterative steps into a deep CDic model.
Experimental results demonstrate the superior performance of the proposed MC-CDic model against existing SOTA methods.
arXiv Detail & Related papers (2023-09-03T13:18:59Z) - DiffBIR: Towards Blind Image Restoration with Generative Diffusion Prior [70.46245698746874]
We present DiffBIR, a general restoration pipeline that could handle different blind image restoration tasks.
DiffBIR decouples blind image restoration problem into two stages: 1) degradation removal: removing image-independent content; 2) information regeneration: generating the lost image content.
In the first stage, we use restoration modules to remove degradations and obtain high-fidelity restored results.
For the second stage, we propose IRControlNet that leverages the generative ability of latent diffusion models to generate realistic details.
arXiv Detail & Related papers (2023-08-29T07:11:52Z) - Super-resolution Reconstruction of Single Image for Latent features [8.857209365343646]
Single-image super-resolution (SISR) typically focuses on restoring various degraded low-resolution (LR) images to a single high-resolution (HR) image.
It is often challenging for models to simultaneously maintain high quality and rapid sampling while preserving diversity in details and texture features.
This challenge can lead to issues such as model collapse, lack of rich details and texture features in the reconstructed HR images, and excessive time consumption for model sampling.
arXiv Detail & Related papers (2022-11-16T09:37:07Z) - Deep Variational Network Toward Blind Image Restoration [60.45350399661175]
Blind image restoration is a common yet challenging problem in computer vision.
We propose a novel blind image restoration method, aiming to integrate both the advantages of them.
Experiments on two typical blind IR tasks, namely image denoising and super-resolution, demonstrate that the proposed method achieves superior performance over current state-of-the-arts.
arXiv Detail & Related papers (2020-08-25T03:30:53Z) - DDet: Dual-path Dynamic Enhancement Network for Real-World Image
Super-Resolution [69.2432352477966]
Real image super-resolution(Real-SR) focus on the relationship between real-world high-resolution(HR) and low-resolution(LR) image.
In this article, we propose a Dual-path Dynamic Enhancement Network(DDet) for Real-SR.
Unlike conventional methods which stack up massive convolutional blocks for feature representation, we introduce a content-aware framework to study non-inherently aligned image pair.
arXiv Detail & Related papers (2020-02-25T18:24:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.