SignSGD with Federated Voting
- URL: http://arxiv.org/abs/2403.16372v1
- Date: Mon, 25 Mar 2024 02:32:43 GMT
- Title: SignSGD with Federated Voting
- Authors: Chanho Park, H. Vincent Poor, Namyoon Lee,
- Abstract summary: SignSGD with majority voting (signSGD-MV) is an effective distributed learning algorithm that can significantly reduce communication costs by one-bit quantization.
We propose a novel signSGD with textitfederated voting (signSGD-FV)
The idea of federated voting is to exploit learnable weights to perform weighted majority voting.
We demonstrate that the proposed signSGD-FV algorithm has a theoretical convergence guarantee even when edge devices use heterogeneous mini-batch sizes.
- Score: 69.06621279967865
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Distributed learning is commonly used for accelerating model training by harnessing the computational capabilities of multiple-edge devices. However, in practical applications, the communication delay emerges as a bottleneck due to the substantial information exchange required between workers and a central parameter server. SignSGD with majority voting (signSGD-MV) is an effective distributed learning algorithm that can significantly reduce communication costs by one-bit quantization. However, due to heterogeneous computational capabilities, it fails to converge when the mini-batch sizes differ among workers. To overcome this, we propose a novel signSGD optimizer with \textit{federated voting} (signSGD-FV). The idea of federated voting is to exploit learnable weights to perform weighted majority voting. The server learns the weights assigned to the edge devices in an online fashion based on their computational capabilities. Subsequently, these weights are employed to decode the signs of the aggregated local gradients in such a way to minimize the sign decoding error probability. We provide a unified convergence rate analysis framework applicable to scenarios where the estimated weights are known to the parameter server either perfectly or imperfectly. We demonstrate that the proposed signSGD-FV algorithm has a theoretical convergence guarantee even when edge devices use heterogeneous mini-batch sizes. Experimental results show that signSGD-FV outperforms signSGD-MV, exhibiting a faster convergence rate, especially in heterogeneous mini-batch sizes.
Related papers
- FedScalar: A Communication efficient Federated Learning [0.0]
Federated learning (FL) has gained considerable popularity for distributed machine learning.
emphFedScalar enables agents to communicate updates using a single scalar.
arXiv Detail & Related papers (2024-10-03T07:06:49Z) - SignSGD with Federated Defense: Harnessing Adversarial Attacks through
Gradient Sign Decoding [26.433639269480345]
SignSGD with majority voting (signSGD-MV) is a simple yet effective approach to accelerate model training using multiple workers.
We show that the convergence rate is invariant as the number of adversarial workers increases, provided that the number of adversarial workers is smaller than that of benign workers.
Unlike the traditional approaches, signSGD-FD exploits the gradient information sent by adversarial workers with the proper weights.
arXiv Detail & Related papers (2024-02-02T11:53:27Z) - Sparse-SignSGD with Majority Vote for Communication-Efficient
Distributed Learning [20.22227794319504]
$sf S3$GD-MV is a communication-efficient distributed optimization algorithm.
We show that it converges at the same rate as signSGD while significantly reducing communication costs.
These findings highlight the potential of $sf S3$GD-MV as a promising solution for communication-efficient distributed optimization in deep learning.
arXiv Detail & Related papers (2023-02-15T05:36:41Z) - Design and Prototyping Distributed CNN Inference Acceleration in Edge
Computing [85.74517957717363]
HALP accelerates inference by designing a seamless collaboration among edge devices (EDs) in Edge Computing.
Experiments show that the distributed inference HALP achieves 1.7x inference acceleration for VGG-16.
It is shown that the model selection with distributed inference HALP can significantly improve service reliability.
arXiv Detail & Related papers (2022-11-24T19:48:30Z) - Task-Oriented Over-the-Air Computation for Multi-Device Edge AI [57.50247872182593]
6G networks for supporting edge AI features task-oriented techniques that focus on effective and efficient execution of AI task.
Task-oriented over-the-air computation (AirComp) scheme is proposed in this paper for multi-device split-inference system.
arXiv Detail & Related papers (2022-11-02T16:35:14Z) - Task-Oriented Sensing, Computation, and Communication Integration for
Multi-Device Edge AI [108.08079323459822]
This paper studies a new multi-intelligent edge artificial-latency (AI) system, which jointly exploits the AI model split inference and integrated sensing and communication (ISAC)
We measure the inference accuracy by adopting an approximate but tractable metric, namely discriminant gain.
arXiv Detail & Related papers (2022-07-03T06:57:07Z) - Wireless Federated Learning with Limited Communication and Differential
Privacy [21.328507360172203]
This paper investigates the role of dimensionality reduction in efficient communication and differential privacy (DP) of the local datasets at the remote users for over-the-air computation (AirComp)-based federated learning (FL) model.
arXiv Detail & Related papers (2021-06-01T15:23:12Z) - Coded Stochastic ADMM for Decentralized Consensus Optimization with Edge
Computing [113.52575069030192]
Big data, including applications with high security requirements, are often collected and stored on multiple heterogeneous devices, such as mobile devices, drones and vehicles.
Due to the limitations of communication costs and security requirements, it is of paramount importance to extract information in a decentralized manner instead of aggregating data to a fusion center.
We consider the problem of learning model parameters in a multi-agent system with data locally processed via distributed edge nodes.
A class of mini-batch alternating direction method of multipliers (ADMM) algorithms is explored to develop the distributed learning model.
arXiv Detail & Related papers (2020-10-02T10:41:59Z) - Straggler-aware Distributed Learning: Communication Computation Latency
Trade-off [56.08535873173518]
Straggling workers can be tolerated by assigning redundant computations and coding across data and computations.
In most existing schemes, each non-straggling worker transmits one message per iteration to the parameter server (PS) after completing all its computations.
Imposing such a limitation results in two main drawbacks; over-computation due to inaccurate prediction of the straggling behaviour, and under-utilization due to treating workers as straggler/non-straggler.
arXiv Detail & Related papers (2020-04-10T08:39:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.