Task-Oriented Over-the-Air Computation for Multi-Device Edge AI
- URL: http://arxiv.org/abs/2211.01255v1
- Date: Wed, 2 Nov 2022 16:35:14 GMT
- Title: Task-Oriented Over-the-Air Computation for Multi-Device Edge AI
- Authors: Dingzhu Wen, Xiang Jiao, Peixi Liu, Guangxu Zhu, Yuanming Shi, and
Kaibin Huang
- Abstract summary: 6G networks for supporting edge AI features task-oriented techniques that focus on effective and efficient execution of AI task.
Task-oriented over-the-air computation (AirComp) scheme is proposed in this paper for multi-device split-inference system.
- Score: 57.50247872182593
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Departing from the classic paradigm of data-centric designs, the 6G networks
for supporting edge AI features task-oriented techniques that focus on
effective and efficient execution of AI task. Targeting end-to-end system
performance, such techniques are sophisticated as they aim to seamlessly
integrate sensing (data acquisition), communication (data transmission), and
computation (data processing). Aligned with the paradigm shift, a task-oriented
over-the-air computation (AirComp) scheme is proposed in this paper for
multi-device split-inference system. In the considered system, local feature
vectors, which are extracted from the real-time noisy sensory data on devices,
are aggregated over-the-air by exploiting the waveform superposition in a
multiuser channel. Then the aggregated features as received at a server are fed
into an inference model with the result used for decision making or control of
actuators. To design inference-oriented AirComp, the transmit precoders at edge
devices and receive beamforming at edge server are jointly optimized to rein in
the aggregation error and maximize the inference accuracy. The problem is made
tractable by measuring the inference accuracy using a surrogate metric called
discriminant gain, which measures the discernibility of two object classes in
the application of object/event classification. It is discovered that the
conventional AirComp beamforming design for minimizing the mean square error in
generic AirComp with respect to the noiseless case may not lead to the optimal
classification accuracy. The reason is due to the overlooking of the fact that
feature dimensions have different sensitivity towards aggregation errors and
are thus of different importance levels for classification. This issue is
addressed in this work via a new task-oriented AirComp scheme designed by
directly maximizing the derived discriminant gain.
Related papers
- Task-Oriented Real-time Visual Inference for IoVT Systems: A Co-design Framework of Neural Networks and Edge Deployment [61.20689382879937]
Task-oriented edge computing addresses this by shifting data analysis to the edge.
Existing methods struggle to balance high model performance with low resource consumption.
We propose a novel co-design framework to optimize neural network architecture.
arXiv Detail & Related papers (2024-10-29T19:02:54Z) - Task-oriented Over-the-air Computation for Edge-device Co-inference with Balanced Classification Accuracy [32.48617448956706]
A task-oriented over-the-air computation scheme is proposed for a multidevice artificial intelligence system.
A novel tractable inference accuracy metric is proposed for classification tasks, which is called minimum pair-wise discriminant gain.
This paper jointly optimize the minimum discriminant gain of all feature elements instead of separately maximizing that of each element in the existing designs.
arXiv Detail & Related papers (2024-07-01T04:17:32Z) - Collaborative Edge AI Inference over Cloud-RAN [37.3710464868215]
A cloud radio access network (Cloud-RAN) based collaborative edge AI inference architecture is proposed.
Specifically, geographically distributed devices capture real-time noise-corrupted sensory data samples and extract the noisy local feature vectors.
We allow each RRH receives local feature vectors from all devices over the same resource blocks simultaneously by leveraging an over-the-air computation (AirComp) technique.
These aggregated feature vectors are quantized and transmitted to a central processor for further aggregation and downstream inference tasks.
arXiv Detail & Related papers (2024-04-09T04:26:16Z) - Random Aggregate Beamforming for Over-the-Air Federated Learning in Large-Scale Networks [66.18765335695414]
We consider a joint device selection and aggregate beamforming design with the objectives of minimizing the aggregate error and maximizing the number of selected devices.
To tackle the problems in a cost-effective manner, we propose a random aggregate beamforming-based scheme.
We additionally use analysis to study the obtained aggregate error and the number of the selected devices when the number of devices becomes large.
arXiv Detail & Related papers (2024-02-20T23:59:45Z) - Scalable Hierarchical Over-the-Air Federated Learning [3.8798345704175534]
This work introduces a new two-level learning method designed to handle both interference and device data heterogeneity.
We present a comprehensive mathematical approach to derive the convergence bound for the proposed algorithm.
Despite the interference and data heterogeneity, the proposed algorithm achieves high learning accuracy for a variety of parameters.
arXiv Detail & Related papers (2022-11-29T12:46:37Z) - Task-Oriented Sensing, Computation, and Communication Integration for
Multi-Device Edge AI [108.08079323459822]
This paper studies a new multi-intelligent edge artificial-latency (AI) system, which jointly exploits the AI model split inference and integrated sensing and communication (ISAC)
We measure the inference accuracy by adopting an approximate but tractable metric, namely discriminant gain.
arXiv Detail & Related papers (2022-07-03T06:57:07Z) - Communication-Computation Efficient Device-Edge Co-Inference via AutoML [4.06604174802643]
Device-edge co-inference partitions a deep neural network between a resource-constrained mobile device and an edge server.
On-device model sparsity level and intermediate feature compression ratio have direct impacts on workload and communication overhead.
We propose a novel automated machine learning (AutoML) framework based on deep reinforcement learning (DRL)
arXiv Detail & Related papers (2021-08-30T06:36:30Z) - Edge Federated Learning Via Unit-Modulus Over-The-Air Computation
(Extended Version) [64.76619508293966]
This paper proposes a unit-modulus over-the-air computation (UM-AirComp) framework to facilitate efficient edge federated learning.
It uploads simultaneously local model parameters and updates global model parameters via analog beamforming.
We demonstrate the implementation of UM-AirComp in a vehicle-to-everything autonomous driving simulation platform.
arXiv Detail & Related papers (2021-01-28T15:10:22Z) - A Compressive Sensing Approach for Federated Learning over Massive MIMO
Communication Systems [82.2513703281725]
Federated learning is a privacy-preserving approach to train a global model at a central server by collaborating with wireless devices.
We present a compressive sensing approach for federated learning over massive multiple-input multiple-output communication systems.
arXiv Detail & Related papers (2020-03-18T05:56:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.