DOCTR: Disentangled Object-Centric Transformer for Point Scene Understanding
- URL: http://arxiv.org/abs/2403.16431v1
- Date: Mon, 25 Mar 2024 05:22:34 GMT
- Title: DOCTR: Disentangled Object-Centric Transformer for Point Scene Understanding
- Authors: Xiaoxuan Yu, Hao Wang, Weiming Li, Qiang Wang, Soonyong Cho, Younghun Sung,
- Abstract summary: Point scene understanding is a challenging task to process real-world scene point cloud.
Recent state-of-the-art method first segments each object and then processes them independently with multiple stages for the different sub-tasks.
We propose a novel Disentangled Object-Centric TRansformer (DOCTR) that explores object-centric representation.
- Score: 7.470587868134298
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Point scene understanding is a challenging task to process real-world scene point cloud, which aims at segmenting each object, estimating its pose, and reconstructing its mesh simultaneously. Recent state-of-the-art method first segments each object and then processes them independently with multiple stages for the different sub-tasks. This leads to a complex pipeline to optimize and makes it hard to leverage the relationship constraints between multiple objects. In this work, we propose a novel Disentangled Object-Centric TRansformer (DOCTR) that explores object-centric representation to facilitate learning with multiple objects for the multiple sub-tasks in a unified manner. Each object is represented as a query, and a Transformer decoder is adapted to iteratively optimize all the queries involving their relationship. In particular, we introduce a semantic-geometry disentangled query (SGDQ) design that enables the query features to attend separately to semantic information and geometric information relevant to the corresponding sub-tasks. A hybrid bipartite matching module is employed to well use the supervisions from all the sub-tasks during training. Qualitative and quantitative experimental results demonstrate that our method achieves state-of-the-art performance on the challenging ScanNet dataset. Code is available at https://github.com/SAITPublic/DOCTR.
Related papers
- Temporal-Enhanced Multimodal Transformer for Referring Multi-Object Tracking and Segmentation [28.16053631036079]
Referring multi-object tracking (RMOT) is an emerging cross-modal task that aims to locate an arbitrary number of target objects in a video.
We introduce a compact Transformer-based method, termed TenRMOT, to exploit the advantages of Transformer architecture.
TenRMOT demonstrates superior performance on both the referring multi-object tracking and the segmentation tasks.
arXiv Detail & Related papers (2024-10-17T11:07:05Z) - Frequency-based Matcher for Long-tailed Semantic Segmentation [22.199174076366003]
We focus on a relatively under-explored task setting, long-tailed semantic segmentation (LTSS)
We propose a dual-metric evaluation system and construct the LTSS benchmark to demonstrate the performance of semantic segmentation methods and long-tailed solutions.
We also propose a transformer-based algorithm to improve LTSS, frequency-based matcher, which solves the oversuppression problem by one-to-many matching.
arXiv Detail & Related papers (2024-06-06T09:57:56Z) - TaskCLIP: Extend Large Vision-Language Model for Task Oriented Object Detection [23.73648235283315]
Task-oriented object detection aims to find objects suitable for accomplishing specific tasks.
Recent solutions are mainly all-in-one models.
We propose TaskCLIP, a more natural two-stage design composed of general object detection and task-guided object selection.
arXiv Detail & Related papers (2024-03-12T22:33:02Z) - Universal Instance Perception as Object Discovery and Retrieval [90.96031157557806]
UNI reformulates diverse instance perception tasks into a unified object discovery and retrieval paradigm.
It can flexibly perceive different types of objects by simply changing the input prompts.
UNI shows superior performance on 20 challenging benchmarks from 10 instance-level tasks.
arXiv Detail & Related papers (2023-03-12T14:28:24Z) - End-to-end Tracking with a Multi-query Transformer [96.13468602635082]
Multiple-object tracking (MOT) is a challenging task that requires simultaneous reasoning about location, appearance, and identity of the objects in the scene over time.
Our aim in this paper is to move beyond tracking-by-detection approaches, to class-agnostic tracking that performs well also for unknown object classes.
arXiv Detail & Related papers (2022-10-26T10:19:37Z) - CASAPose: Class-Adaptive and Semantic-Aware Multi-Object Pose Estimation [2.861848675707602]
We present a new single-stage architecture called CASAPose.
It determines 2D-3D correspondences for pose estimation of multiple different objects in RGB images in one pass.
It is fast and memory efficient, and achieves high accuracy for multiple objects.
arXiv Detail & Related papers (2022-10-11T10:20:01Z) - Segmenting Moving Objects via an Object-Centric Layered Representation [100.26138772664811]
We introduce an object-centric segmentation model with a depth-ordered layer representation.
We introduce a scalable pipeline for generating synthetic training data with multiple objects.
We evaluate the model on standard video segmentation benchmarks.
arXiv Detail & Related papers (2022-07-05T17:59:43Z) - Continual Object Detection via Prototypical Task Correlation Guided
Gating Mechanism [120.1998866178014]
We present a flexible framework for continual object detection via pRotOtypical taSk corrElaTion guided gaTingAnism (ROSETTA)
Concretely, a unified framework is shared by all tasks while task-aware gates are introduced to automatically select sub-models for specific tasks.
Experiments on COCO-VOC, KITTI-Kitchen, class-incremental detection on VOC and sequential learning of four tasks show that ROSETTA yields state-of-the-art performance.
arXiv Detail & Related papers (2022-05-06T07:31:28Z) - Exploring Relational Context for Multi-Task Dense Prediction [76.86090370115]
We consider a multi-task environment for dense prediction tasks, represented by a common backbone and independent task-specific heads.
We explore various attention-based contexts, such as global and local, in the multi-task setting.
We propose an Adaptive Task-Relational Context module, which samples the pool of all available contexts for each task pair.
arXiv Detail & Related papers (2021-04-28T16:45:56Z) - Tasks Integrated Networks: Joint Detection and Retrieval for Image
Search [99.49021025124405]
In many real-world searching scenarios (e.g., video surveillance), the objects are seldom accurately detected or annotated.
We first introduce an end-to-end Integrated Net (I-Net), which has three merits.
We further propose an improved I-Net, called DC-I-Net, which makes two new contributions.
arXiv Detail & Related papers (2020-09-03T03:57:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.