UniQ: Unified Decoder with Task-specific Queries for Efficient Scene Graph Generation
- URL: http://arxiv.org/abs/2501.05687v1
- Date: Fri, 10 Jan 2025 03:38:16 GMT
- Title: UniQ: Unified Decoder with Task-specific Queries for Efficient Scene Graph Generation
- Authors: Xinyao Liao, Wei Wei, Dangyang Chen, Yuanyuan Fu,
- Abstract summary: Scene Graph Generation (SGG) aims at identifying object entities and reasoning their relationships within a given image.
One-stage methods integrate a fixed-size set of learnable queries to jointly reason relational triplets.
The challenge in one-stage methods stems from the issue of weak entanglement.
We introduce UniQ, a Unified decoder with task-specific queries architecture.
- Score: 9.275683880295874
- License:
- Abstract: Scene Graph Generation(SGG) is a scene understanding task that aims at identifying object entities and reasoning their relationships within a given image. In contrast to prevailing two-stage methods based on a large object detector (e.g., Faster R-CNN), one-stage methods integrate a fixed-size set of learnable queries to jointly reason relational triplets <subject, predicate, object>. This paradigm demonstrates robust performance with significantly reduced parameters and computational overhead. However, the challenge in one-stage methods stems from the issue of weak entanglement, wherein entities involved in relationships require both coupled features shared within triplets and decoupled visual features. Previous methods either adopt a single decoder for coupled triplet feature modeling or multiple decoders for separate visual feature extraction but fail to consider both. In this paper, we introduce UniQ, a Unified decoder with task-specific Queries architecture, where task-specific queries generate decoupled visual features for subjects, objects, and predicates respectively, and unified decoder enables coupled feature modeling within relational triplets. Experimental results on the Visual Genome dataset demonstrate that UniQ has superior performance to both one-stage and two-stage methods.
Related papers
- DOCTR: Disentangled Object-Centric Transformer for Point Scene Understanding [7.470587868134298]
Point scene understanding is a challenging task to process real-world scene point cloud.
Recent state-of-the-art method first segments each object and then processes them independently with multiple stages for the different sub-tasks.
We propose a novel Disentangled Object-Centric TRansformer (DOCTR) that explores object-centric representation.
arXiv Detail & Related papers (2024-03-25T05:22:34Z) - Scene-Graph ViT: End-to-End Open-Vocabulary Visual Relationship Detection [14.22646492640906]
We propose a simple and highly efficient decoder-free architecture for open-vocabulary visual relationship detection.
Our model consists of a Transformer-based image encoder that represents objects as tokens and models their relationships implicitly.
Our approach achieves state-of-the-art relationship detection performance on Visual Genome and on the large-vocabulary GQA benchmark at real-time inference speeds.
arXiv Detail & Related papers (2024-03-21T10:15:57Z) - M$^3$Net: Multi-view Encoding, Matching, and Fusion for Few-shot
Fine-grained Action Recognition [80.21796574234287]
M$3$Net is a matching-based framework for few-shot fine-grained (FS-FG) action recognition.
It incorporates textitmulti-view encoding, textitmulti-view matching, and textitmulti-view fusion to facilitate embedding encoding, similarity matching, and decision making.
Explainable visualizations and experimental results demonstrate the superiority of M$3$Net in capturing fine-grained action details.
arXiv Detail & Related papers (2023-08-06T09:15:14Z) - Spatial-Temporal Graph Enhanced DETR Towards Multi-Frame 3D Object Detection [54.041049052843604]
We present STEMD, a novel end-to-end framework that enhances the DETR-like paradigm for multi-frame 3D object detection.
First, to model the inter-object spatial interaction and complex temporal dependencies, we introduce the spatial-temporal graph attention network.
Finally, it poses a challenge for the network to distinguish between the positive query and other highly similar queries that are not the best match.
arXiv Detail & Related papers (2023-07-01T13:53:14Z) - Single-Stage Visual Relationship Learning using Conditional Queries [60.90880759475021]
TraCQ is a new formulation for scene graph generation that avoids the multi-task learning problem and the entity pair distribution.
We employ a DETR-based encoder-decoder conditional queries to significantly reduce the entity label space as well.
Experimental results show that TraCQ not only outperforms existing single-stage scene graph generation methods, it also beats many state-of-the-art two-stage methods on the Visual Genome dataset.
arXiv Detail & Related papers (2023-06-09T06:02:01Z) - A Dynamic Feature Interaction Framework for Multi-task Visual Perception [100.98434079696268]
We devise an efficient unified framework to solve multiple common perception tasks.
These tasks include instance segmentation, semantic segmentation, monocular 3D detection, and depth estimation.
Our proposed framework, termed D2BNet, demonstrates a unique approach to parameter-efficient predictions for multi-task perception.
arXiv Detail & Related papers (2023-06-08T09:24:46Z) - Complex-Valued Autoencoders for Object Discovery [62.26260974933819]
We propose a distributed approach to object-centric representations: the Complex AutoEncoder.
We show that this simple and efficient approach achieves better reconstruction performance than an equivalent real-valued autoencoder on simple multi-object datasets.
We also show that it achieves competitive unsupervised object discovery performance to a SlotAttention model on two datasets, and manages to disentangle objects in a third dataset where SlotAttention fails - all while being 7-70 times faster to train.
arXiv Detail & Related papers (2022-04-05T09:25:28Z) - Tasks Integrated Networks: Joint Detection and Retrieval for Image
Search [99.49021025124405]
In many real-world searching scenarios (e.g., video surveillance), the objects are seldom accurately detected or annotated.
We first introduce an end-to-end Integrated Net (I-Net), which has three merits.
We further propose an improved I-Net, called DC-I-Net, which makes two new contributions.
arXiv Detail & Related papers (2020-09-03T03:57:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.