On the rates of convergence for learning with convolutional neural networks
- URL: http://arxiv.org/abs/2403.16459v2
- Date: Tue, 9 Apr 2024 03:06:10 GMT
- Title: On the rates of convergence for learning with convolutional neural networks
- Authors: Yunfei Yang, Han Feng, Ding-Xuan Zhou,
- Abstract summary: We study approximation and learning capacities of convolutional neural networks (CNNs) with one-side zero-padding and multiple channels.
We derive convergence rates for estimators based on CNNs in many learning problems.
It is also shown that the obtained rates for classification are minimax optimal in some common settings.
- Score: 9.772773527230134
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study approximation and learning capacities of convolutional neural networks (CNNs) with one-side zero-padding and multiple channels. Our first result proves a new approximation bound for CNNs with certain constraint on the weights. Our second result gives new analysis on the covering number of feed-forward neural networks with CNNs as special cases. The analysis carefully takes into account the size of the weights and hence gives better bounds than the existing literature in some situations. Using these two results, we are able to derive rates of convergence for estimators based on CNNs in many learning problems. In particular, we establish minimax optimal convergence rates of the least squares based on CNNs for learning smooth functions in the nonparametric regression setting. For binary classification, we derive convergence rates for CNN classifiers with hinge loss and logistic loss. It is also shown that the obtained rates for classification are minimax optimal in some common settings.
Related papers
- Model Parallel Training and Transfer Learning for Convolutional Neural Networks by Domain Decomposition [0.0]
Deep convolutional neural networks (CNNs) have been shown to be very successful in a wide range of image processing applications.
Due to their increasing number of model parameters and an increasing availability of large amounts of training data, parallelization strategies to efficiently train complex CNNs are necessary.
arXiv Detail & Related papers (2024-08-26T17:35:01Z) - CNN2GNN: How to Bridge CNN with GNN [59.42117676779735]
We propose a novel CNN2GNN framework to unify CNN and GNN together via distillation.
The performance of distilled boosted'' two-layer GNN on Mini-ImageNet is much higher than CNN containing dozens of layers such as ResNet152.
arXiv Detail & Related papers (2024-04-23T08:19:08Z) - Benign Overfitting in Two-Layer ReLU Convolutional Neural Networks for
XOR Data [24.86314525762012]
We show that ReLU CNN trained by gradient descent can achieve near Bayes-optimal accuracy.
Our result demonstrates that CNNs have a remarkable capacity to efficiently learn XOR problems, even in the presence of highly correlated features.
arXiv Detail & Related papers (2023-10-03T11:31:37Z) - A Proximal Algorithm for Network Slimming [2.8148957592979427]
A popular channel pruning method for convolutional neural networks (CNNs) uses subgradient descent to train CNNs.
We develop an alternative algorithm called proximal NS to train CNNs towards sparse, accurate structures.
Our experiments demonstrate that after one round of training, proximal NS yields a CNN with competitive accuracy and compression.
arXiv Detail & Related papers (2023-07-02T23:34:12Z) - Joint Edge-Model Sparse Learning is Provably Efficient for Graph Neural
Networks [89.28881869440433]
This paper provides the first theoretical characterization of joint edge-model sparse learning for graph neural networks (GNNs)
It proves analytically that both sampling important nodes and pruning neurons with the lowest-magnitude can reduce the sample complexity and improve convergence without compromising the test accuracy.
arXiv Detail & Related papers (2023-02-06T16:54:20Z) - Large-Margin Representation Learning for Texture Classification [67.94823375350433]
This paper presents a novel approach combining convolutional layers (CLs) and large-margin metric learning for training supervised models on small datasets for texture classification.
The experimental results on texture and histopathologic image datasets have shown that the proposed approach achieves competitive accuracy with lower computational cost and faster convergence when compared to equivalent CNNs.
arXiv Detail & Related papers (2022-06-17T04:07:45Z) - Analytic Learning of Convolutional Neural Network For Pattern
Recognition [20.916630175697065]
Training convolutional neural networks (CNNs) with back-propagation (BP) is time-consuming and resource-intensive.
We propose an analytic convolutional neural network learning (ACnnL)
ACnnL builds a closed-form solution similar to its counterpart, but differs in their regularization constraints.
arXiv Detail & Related papers (2022-02-14T06:32:21Z) - Towards an Understanding of Benign Overfitting in Neural Networks [104.2956323934544]
Modern machine learning models often employ a huge number of parameters and are typically optimized to have zero training loss.
We examine how these benign overfitting phenomena occur in a two-layer neural network setting.
We show that it is possible for the two-layer ReLU network interpolator to achieve a near minimax-optimal learning rate.
arXiv Detail & Related papers (2021-06-06T19:08:53Z) - ACDC: Weight Sharing in Atom-Coefficient Decomposed Convolution [57.635467829558664]
We introduce a structural regularization across convolutional kernels in a CNN.
We show that CNNs now maintain performance with dramatic reduction in parameters and computations.
arXiv Detail & Related papers (2020-09-04T20:41:47Z) - Approximation and Non-parametric Estimation of ResNet-type Convolutional
Neural Networks [52.972605601174955]
We show a ResNet-type CNN can attain the minimax optimal error rates in important function classes.
We derive approximation and estimation error rates of the aformentioned type of CNNs for the Barron and H"older classes.
arXiv Detail & Related papers (2019-03-24T19:42:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.