論文の概要: Determined Multi-Label Learning via Similarity-Based Prompt
- arxiv url: http://arxiv.org/abs/2403.16482v1
- Date: Mon, 25 Mar 2024 07:08:01 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-26 15:37:57.132353
- Title: Determined Multi-Label Learning via Similarity-Based Prompt
- Title(参考訳): 類似性に基づくプロンプトによる複数ラベル学習の決定
- Authors: Meng Wei, Zhongnian Li, Peng Ying, Yong Zhou, Xinzheng Xu,
- Abstract要約: マルチラベル分類では、各トレーニングインスタンスは複数のクラスラベルに同時に関連付けられている。
この問題を軽減するために,textitDetermined Multi-Label Learning (DMLL) と呼ばれる新しいラベル設定を提案する。
- 参考スコア(独自算出の注目度): 12.428779617221366
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In multi-label classification, each training instance is associated with multiple class labels simultaneously. Unfortunately, collecting the fully precise class labels for each training instance is time- and labor-consuming for real-world applications. To alleviate this problem, a novel labeling setting termed \textit{Determined Multi-Label Learning} (DMLL) is proposed, aiming to effectively alleviate the labeling cost inherent in multi-label tasks. In this novel labeling setting, each training instance is associated with a \textit{determined label} (either "Yes" or "No"), which indicates whether the training instance contains the provided class label. The provided class label is randomly and uniformly selected from the whole candidate labels set. Besides, each training instance only need to be determined once, which significantly reduce the annotation cost of the labeling task for multi-label datasets. In this paper, we theoretically derive an risk-consistent estimator to learn a multi-label classifier from these determined-labeled training data. Additionally, we introduce a similarity-based prompt learning method for the first time, which minimizes the risk-consistent loss of large-scale pre-trained models to learn a supplemental prompt with richer semantic information. Extensive experimental validation underscores the efficacy of our approach, demonstrating superior performance compared to existing state-of-the-art methods.
- Abstract(参考訳): マルチラベル分類では、各トレーニングインスタンスは複数のクラスラベルに同時に関連付けられている。
残念ながら、トレーニングインスタンス毎の完全なクラスラベルの収集には、実世界のアプリケーションには時間と労力がかかります。
この問題を軽減するために, DMLL (textit{Determined Multi-Label Learning}) と呼ばれる新しいラベリング設定を提案し, マルチラベルタスクに固有のラベリングコストを効果的に軽減することを目的とした。
この新しいラベル設定では、各トレーニングインスタンスは、提供されたクラスラベルを含むかどうかを示す \textit{determined label} ("Yes" または "No" のいずれか)に関連付けられている。
提供されたクラスラベルは、候補ラベルセット全体からランダムに均一に選択される。
さらに、各トレーニングインスタンスは一度だけ決定する必要があるため、マルチラベルデータセットのラベル付けタスクのアノテーションコストが大幅に削減される。
本稿では,これらの判定されたラベル付きトレーニングデータから多ラベル分類器を学習するためのリスク一貫性推定器を理論的に導出する。
さらに,よりリッチな意味情報を持つ補足的プロンプトを学習するために,大規模事前学習モデルのリスク持続的損失を最小限に抑える,類似性に基づくプロンプト学習手法を初めて導入する。
提案手法の有効性を実証し,既存の最先端手法と比較して優れた性能を示した。
関連論文リスト
- Towards Imbalanced Large Scale Multi-label Classification with Partially
Annotated Labels [8.977819892091]
マルチラベル分類は、複数のクラスにインスタンスを関連付けることができる日常生活において、広く発生する問題である。
本研究では,ラベルの不均衡の問題に対処し,部分ラベルを用いたニューラルネットワークのトレーニング方法について検討する。
論文 参考訳(メタデータ) (2023-07-31T21:50:48Z) - Imprecise Label Learning: A Unified Framework for Learning with Various
Imprecise Label Configurations [95.12263518034939]
imprecise label learning (ILL)は、様々な不正確なラベル構成で学習を統合するためのフレームワークである。
我々は、ILLが部分ラベル学習、半教師付き学習、雑音ラベル学習にシームレスに適応できることを実証した。
論文 参考訳(メタデータ) (2023-05-22T04:50:28Z) - Class-Distribution-Aware Pseudo Labeling for Semi-Supervised Multi-Label
Learning [97.88458953075205]
Pseudo-labelingは、ラベルなしデータを利用するための人気で効果的なアプローチとして登場した。
本稿では,クラスアウェアの擬似ラベル処理を行うCAP(Class-Aware Pseudo-Labeling)という新しい手法を提案する。
論文 参考訳(メタデータ) (2023-05-04T12:52:18Z) - Learning from Stochastic Labels [8.178975818137937]
マルチクラスインスタンスのアノテーションは、機械学習の分野で重要なタスクである。
本稿では,これらのラベルから学習するための新しいアプローチを提案する。
論文 参考訳(メタデータ) (2023-02-01T08:04:27Z) - PLMCL: Partial-Label Momentum Curriculum Learning for Multi-Label Image
Classification [25.451065364433028]
マルチラベル画像分類は、画像内の全ての可能なラベルを予測することを目的としている。
既存の部分ラベル学習の研究は、各トレーニングイメージがラベルのサブセットでアノテートされている場合に焦点を当てている。
本稿では,トレーニング画像のサブセットのみをラベル付けした新たな部分ラベル設定を提案する。
論文 参考訳(メタデータ) (2022-08-22T01:23:08Z) - One Positive Label is Sufficient: Single-Positive Multi-Label Learning
with Label Enhancement [71.9401831465908]
本研究では,SPMLL (Single- positive multi-label learning) について検討した。
ラベルエンハンスメントを用いた単陽性MultIラベル学習という新しい手法を提案する。
ベンチマークデータセットの実験により,提案手法の有効性が検証された。
論文 参考訳(メタデータ) (2022-06-01T14:26:30Z) - Learning with Proper Partial Labels [87.65718705642819]
部分ラベル学習は、不正確なラベルを持つ弱い教師付き学習の一種である。
この適切な部分ラベル学習フレームワークには,従来の部分ラベル学習設定が数多く含まれていることを示す。
次に、分類リスクの統一的非バイアス推定器を導出する。
論文 参考訳(メタデータ) (2021-12-23T01:37:03Z) - Instance-Dependent Partial Label Learning [69.49681837908511]
部分ラベル学習は、典型的には弱教師付き学習問題である。
既存のほとんどのアプローチでは、トレーニングサンプルの間違ったラベルがランダムに候補ラベルとして選択されていると仮定している。
本稿では,各例が実数で構成された潜在ラベル分布と関連していると仮定する。
論文 参考訳(メタデータ) (2021-10-25T12:50:26Z) - Active Learning in Incomplete Label Multiple Instance Multiple Label
Learning [17.5720245903743]
MIML設定におけるアクティブラーニングのための新しいバッグクラスペア方式を提案する。
我々のアプローチは、効率的かつ正確な推論を伴う識別的グラフィカルモデルに基づいている。
論文 参考訳(メタデータ) (2021-07-22T17:01:28Z) - Unsupervised Person Re-identification via Multi-label Classification [55.65870468861157]
本稿では,教師なしのReIDを多ラベル分類タスクとして定式化し,段階的に真のラベルを求める。
提案手法は,まず,各人物画像に単一クラスラベルを割り当てることから始まり,ラベル予測のために更新されたReIDモデルを活用することで,多ラベル分類へと進化する。
マルチラベル分類におけるReIDモデルのトレーニング効率を高めるために,メモリベースマルチラベル分類損失(MMCL)を提案する。
論文 参考訳(メタデータ) (2020-04-20T12:13:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。