CT-Bound: Robust Boundary Detection From Noisy Images Via Hybrid Convolution and Transformer Neural Networks
- URL: http://arxiv.org/abs/2403.16494v2
- Date: Tue, 25 Jun 2024 17:56:21 GMT
- Title: CT-Bound: Robust Boundary Detection From Noisy Images Via Hybrid Convolution and Transformer Neural Networks
- Authors: Wei Xu, Junjie Luo, Qi Guo,
- Abstract summary: We present CT-Bound, a robust and fast boundary detection method for very noisy images using a hybrid Convolution and Transformer neural network.
During the local detection, the model uses a convolutional architecture to predict the boundary structure of each image patch.
Then, it uses a feed-forward transformer architecture to globally refine the boundary structures of each patch to generate an edge map and a smoothed color map simultaneously.
- Score: 10.622511683372815
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: We present CT-Bound, a robust and fast boundary detection method for very noisy images using a hybrid Convolution and Transformer neural network. The proposed architecture decomposes boundary estimation into two tasks: local detection and global regularization. During the local detection, the model uses a convolutional architecture to predict the boundary structure of each image patch in the form of a pre-defined local boundary representation, the field-of-junctions (FoJ). Then, it uses a feed-forward transformer architecture to globally refine the boundary structures of each patch to generate an edge map and a smoothed color map simultaneously. Our quantitative analysis shows that CT-Bound outperforms the previous best algorithms in edge detection on very noisy images. It also increases the edge detection accuracy of FoJ-based methods while having a 3-time speed improvement. Finally, we demonstrate that CT-Bound can produce boundary and color maps on real captured images without extra fine-tuning and real-time boundary map and color map videos at ten frames per second.
Related papers
- EDCSSM: Edge Detection with Convolutional State Space Model [3.649463841174485]
Edge detection in images is the foundation of many complex tasks in computer graphics.
Due to the feature loss caused by multi-layer convolution and pooling architectures, learning-based edge detection models often produce thick edges.
This paper presents an edge detection algorithm which effectively addresses the aforementioned issues.
arXiv Detail & Related papers (2024-09-03T05:13:25Z) - Boosting Cross-Domain Point Classification via Distilling Relational Priors from 2D Transformers [59.0181939916084]
Traditional 3D networks mainly focus on local geometric details and ignore the topological structure between local geometries.
We propose a novel Priors Distillation (RPD) method to extract priors from the well-trained transformers on massive images.
Experiments on the PointDA-10 and the Sim-to-Real datasets verify that the proposed method consistently achieves the state-of-the-art performance of UDA for point cloud classification.
arXiv Detail & Related papers (2024-07-26T06:29:09Z) - TCCT-Net: Two-Stream Network Architecture for Fast and Efficient Engagement Estimation via Behavioral Feature Signals [58.865901821451295]
We present a novel two-stream feature fusion "Tensor-Convolution and Convolution-Transformer Network" (TCCT-Net) architecture.
To better learn the meaningful patterns in the temporal-spatial domain, we design a "CT" stream that integrates a hybrid convolutional-transformer.
In parallel, to efficiently extract rich patterns from the temporal-frequency domain, we introduce a "TC" stream that uses Continuous Wavelet Transform (CWT) to represent information in a 2D tensor form.
arXiv Detail & Related papers (2024-04-15T06:01:48Z) - Distance Weighted Trans Network for Image Completion [52.318730994423106]
We propose a new architecture that relies on Distance-based Weighted Transformer (DWT) to better understand the relationships between an image's components.
CNNs are used to augment the local texture information of coarse priors.
DWT blocks are used to recover certain coarse textures and coherent visual structures.
arXiv Detail & Related papers (2023-10-11T12:46:11Z) - FocalUNETR: A Focal Transformer for Boundary-aware Segmentation of CT
Images [6.616213497895369]
We propose a novel focal transformer-based image segmentation architecture to extract local visual features and global context from CT images.
We demonstrate that this design significantly improves the quality of the CT-based prostate segmentation task over other competing methods.
arXiv Detail & Related papers (2022-10-06T20:06:24Z) - Structured Context Transformer for Generic Event Boundary Detection [32.09242716244653]
We present Structured Context Transformer (or SC-Transformer) to solve the Generic Event Boundary Detection task.
We use the backbone convolutional neural network (CNN) to extract the features of each video frame.
A lightweight fully convolutional network is used to determine the event boundaries based on the grouped similarity maps.
arXiv Detail & Related papers (2022-06-07T03:00:24Z) - TBNet:Two-Stream Boundary-aware Network for Generic Image Manipulation
Localization [49.521622399483846]
We propose a novel end-to-end two-stream boundary-aware network (abbreviated as TBNet) for generic image manipulation localization.
The proposed TBNet can significantly outperform state-of-the-art generic image manipulation localization methods in terms of both MCC and F1.
arXiv Detail & Related papers (2021-08-10T08:22:05Z) - DeepStrip: High Resolution Boundary Refinement [60.00241966809684]
We propose to convert regions of interest into strip images and compute a boundary prediction in the strip domain.
To detect the target boundary, we present a framework with two prediction layers.
We enforce a matching consistency and C0 continuity regularization to the network to reduce false alarms.
arXiv Detail & Related papers (2020-03-25T22:44:48Z) - Saliency Enhancement using Gradient Domain Edges Merging [65.90255950853674]
We develop a method to merge the edges with the saliency maps to improve the performance of the saliency.
This leads to our proposed saliency enhancement using edges (SEE) with an average improvement of at least 3.4 times higher on the DUT-OMRON dataset.
The SEE algorithm is split into 2 parts, SEE-Pre for preprocessing and SEE-Post pour postprocessing.
arXiv Detail & Related papers (2020-02-11T14:04:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.