論文の概要: Medical Image Registration and Its Application in Retinal Images: A Review
- arxiv url: http://arxiv.org/abs/2403.16502v1
- Date: Mon, 25 Mar 2024 07:35:28 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-26 15:37:57.112519
- Title: Medical Image Registration and Its Application in Retinal Images: A Review
- Title(参考訳): 医用画像のレジストレーションと網膜画像への応用
- Authors: Qiushi Nie, Xiaoqing Zhang, Yan Hu, Mingdao Gong, Jiang Liu,
- Abstract要約: 本稿では,従来型および深層学習に基づく医用画像登録手法の総合的なレビューを行う。
また、網膜画像登録の現在の課題についても論じ、今後の研究への洞察と展望を提供する。
- 参考スコア(独自算出の注目度): 4.634056717325716
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Medical image registration is vital for disease diagnosis and treatment with its ability to merge diverse information of images, which may be captured under different times, angles, or modalities. Although several surveys have reviewed the development of medical image registration, these surveys have not systematically summarized methodologies of existing medical image registration methods. To this end, we provide a comprehensive review of these methods from traditional and deep learning-based directions, aiming to help audiences understand the development of medical image registration quickly. In particular, we review recent advances in retinal image registration at the end of each section, which has not attracted much attention. Additionally, we also discuss the current challenges of retinal image registration and provide insights and prospects for future research.
- Abstract(参考訳): 医用画像登録は疾患の診断と治療に不可欠であり、異なる時間、角度、モダリティで撮影される画像の多様な情報をマージする能力がある。
いくつかの調査では医用画像登録の開発をレビューしているが、これらの調査は既存の医用画像登録方法の方法論を体系的に要約していない。
この目的のために,これらの手法を従来型および深層学習の方向から総合的にレビューし,医療画像の登録を迅速に理解することを目的とした。
特に,各節末部における網膜画像登録の最近の進歩を概観するが,あまり注目されていない。
また、網膜画像登録の現在の課題についても論じ、今後の研究への洞察と展望を提供する。
関連論文リスト
- Mining Gaze for Contrastive Learning toward Computer-Assisted Diagnosis [61.089776864520594]
医用画像のテキストレポートの代替としてアイトラッキングを提案する。
医用画像を読み,診断する際に放射線科医の視線を追跡することにより,その視覚的注意と臨床的理由を理解することができる。
対照的な学習フレームワークのためのプラグイン・アンド・プレイモジュールとして,McGIP (McGIP) を導入した。
論文 参考訳(メタデータ) (2023-12-11T02:27:45Z) - Deep learning in medical image registration: introduction and survey [0.0]
本論文では,簡単な数値例を用いて画像登録を行う。
空間指向のシンボル表現とともに、画像登録の定義を提供する。
また、画像ガイド下手術、運動追跡、腫瘍診断の応用も検討している。
論文 参考訳(メタデータ) (2023-09-01T20:35:00Z) - Joint segmentation and discontinuity-preserving deformable registration:
Application to cardiac cine-MR images [74.99415008543276]
多くの深層学習に基づく登録法は、変形場は画像領域の至る所で滑らかで連続的であると仮定する。
本研究では,この課題に対処するために,不連続かつ局所的に滑らかな変形場を確保するための新しい不連続保存画像登録手法を提案する。
入力画像の構造的相関を学習するために,ネットワークのセグメンテーション成分にコアテンションブロックを提案する。
大規模心磁気共鳴画像系列を用いた物体内時間画像登録の課題について検討した。
論文 参考訳(メタデータ) (2022-11-24T23:45:01Z) - Medical image registration using unsupervised deep neural network: A
scoping literature review [0.9527960631238173]
医学において、画像登録は画像誘導的介入やその他の臨床応用において不可欠である。
ディープニューラルネットワークの実装は、画像登録を少ない時間で高精度に行うなど、いくつかの医療応用の機会を提供する。
論文 参考訳(メタデータ) (2022-08-03T03:11:34Z) - Learning with Limited Annotations: A Survey on Deep Semi-Supervised
Learning for Medical Image Segmentation [8.946871799178338]
本稿では,最近提案された医用画像分割のための半教師あり学習手法について概観する。
既存のアプローチの限界と未解決の問題を分析し,議論する。
論文 参考訳(メタデータ) (2022-07-28T15:57:46Z) - Deep Learning for Medical Image Registration: A Comprehensive Review [1.3190581566723918]
深層学習(DL)に基づく医用画像登録モデルの開発が急速に進んでいる。
本総説では,X線,CTスキャン,超音波,MRIなどのモノモダルおよびマルチモーダルの登録と関連画像に焦点をあてる。
論文 参考訳(メタデータ) (2022-04-24T19:34:00Z) - A Deep Discontinuity-Preserving Image Registration Network [73.03885837923599]
ほとんどの深層学習に基づく登録法は、所望の変形場が全世界的に滑らかで連続的であると仮定する。
本稿では、より優れた登録性能とリアルな変形場を得るために、弱い教師付き深部不連続保存画像登録ネットワーク(DDIR)を提案する。
本研究では, 心臓磁気共鳴(MR)画像の登録実験において, 登録精度を大幅に向上し, より現実的な変形を予測できることを実証した。
論文 参考訳(メタデータ) (2021-07-09T13:35:59Z) - An Interpretable Multiple-Instance Approach for the Detection of
referable Diabetic Retinopathy from Fundus Images [72.94446225783697]
基礎画像における参照糖尿病網膜症検出のための機械学習システムを提案する。
画像パッチから局所情報を抽出し,アテンション機構により効率的に組み合わせることで,高い分類精度を実現することができる。
我々は,現在入手可能な網膜画像データセットに対するアプローチを評価し,最先端の性能を示す。
論文 参考訳(メタデータ) (2021-03-02T13:14:15Z) - Generative Adversarial U-Net for Domain-free Medical Image Augmentation [49.72048151146307]
注釈付き医用画像の不足は、医用画像コンピューティングの分野における最大の課題の1つだ。
本稿では,生成逆U-Netという新しい生成手法を提案する。
当社の新しいモデルは、ドメインフリーで、さまざまな医療画像に汎用性があります。
論文 参考訳(メタデータ) (2021-01-12T23:02:26Z) - Explaining Clinical Decision Support Systems in Medical Imaging using
Cycle-Consistent Activation Maximization [112.2628296775395]
ディープニューラルネットワークを用いた臨床意思決定支援は、着実に関心が高まりつつあるトピックとなっている。
臨床医は、その根底にある意思決定プロセスが不透明で理解しにくいため、この技術の採用をためらうことが多い。
そこで我々は,より小さなデータセットであっても,分類器決定の高品質な可視化を生成するCycleGANアクティベーションに基づく,新たな意思決定手法を提案する。
論文 参考訳(メタデータ) (2020-10-09T14:39:27Z) - Medical Image Registration Using Deep Neural Networks: A Comprehensive
Review [1.2425910171551517]
ディープニューラルネットワークを用いた医用画像登録に関する最新の文献を紹介する。
レビューは体系的であり、以前この分野で出版されたすべての関連作品を含んでいる。
このレビューは、最先端の文献を調査し、将来的な文献に貢献しようとする、現場で活動している読者の深い理解と洞察を可能にする。
論文 参考訳(メタデータ) (2020-02-09T17:22:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。