Human Understanding AI Paper Challenge 2024 -- Dataset Design
- URL: http://arxiv.org/abs/2403.16509v1
- Date: Mon, 25 Mar 2024 07:48:34 GMT
- Title: Human Understanding AI Paper Challenge 2024 -- Dataset Design
- Authors: Se Won Oh, Hyuntae Jeong, Jeong Mook Lim, Seungeun Chung, Kyoung Ju Noh,
- Abstract summary: In 2024, we will hold a research paper competition (the third Human Understanding AI Paper Challenge) for the research and development of artificial intelligence technologies to understand human daily life.
This document introduces the datasets that will be provided to participants in the competition, and summarizes the issues to consider in data processing and learning model development.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In 2024, we will hold a research paper competition (the third Human Understanding AI Paper Challenge) for the research and development of artificial intelligence technologies to understand human daily life. This document introduces the datasets that will be provided to participants in the competition, and summarizes the issues to consider in data processing and learning model development.
Related papers
- Overview of AI-Debater 2023: The Challenges of Argument Generation Tasks [62.443665295250035]
We present the results of the AI-Debater 2023 Challenge held by the Chinese Conference on Affect Computing (CCAC 2023)
In total, 32 competing teams register for the challenge, from which we received 11 successful submissions.
arXiv Detail & Related papers (2024-07-20T10:13:54Z) - Research information in the light of artificial intelligence: quality and data ecologies [0.0]
This paper presents multi- and interdisciplinary approaches for finding the appropriate AI technologies for research information.
Professional research information management (RIM) is becoming increasingly important as an expressly data-driven tool for researchers.
arXiv Detail & Related papers (2024-05-06T16:07:56Z) - Can AI Serve as a Substitute for Human Subjects in Software Engineering
Research? [24.39463126056733]
This vision paper proposes a novel approach to qualitative data collection in software engineering research by harnessing the capabilities of artificial intelligence (AI)
We explore the potential of AI-generated synthetic text as an alternative source of qualitative data.
We discuss the prospective development of new foundation models aimed at emulating human behavior in observational studies and user evaluations.
arXiv Detail & Related papers (2023-11-18T14:05:52Z) - SynFacePAD 2023: Competition on Face Presentation Attack Detection Based
on Privacy-aware Synthetic Training Data [51.42380508231581]
The paper presents a summary of the Competition on Face Presentation Attack Detection Based on Privacy-aware Synthetic Training Data (SynFacePAD 2023) held at the 2023 International Joint Conference on Biometrics (IJCB 2023)
The competition aimed to motivate and attract solutions that target detecting face presentation attacks while considering synthetic-based training data motivated by privacy, legal and ethical concerns associated with personal data.
The submitted solutions presented innovations and novel approaches that led to outperforming the considered baseline in the investigated benchmarks.
arXiv Detail & Related papers (2023-11-09T13:02:04Z) - ICML 2023 Topological Deep Learning Challenge : Design and Results [83.5003281210199]
The competition asked participants to provide open-source implementations of topological neural networks from the literature.
The challenge attracted twenty-eight qualifying submissions in its two-month duration.
This paper describes the design of the challenge and summarizes its main findings.
arXiv Detail & Related papers (2023-09-26T18:49:30Z) - Coordinated Science Laboratory 70th Anniversary Symposium: The Future of
Computing [80.72844751804166]
In 2021, the Coordinated Science Laboratory CSL hosted the Future of Computing Symposium to celebrate its 70th anniversary.
We summarize the major technological points, insights, and directions that speakers brought forward during the symposium.
Participants discussed topics related to new computing paradigms, technologies, algorithms, behaviors, and research challenges to be expected in the future.
arXiv Detail & Related papers (2022-10-04T17:32:27Z) - Learning from learning machines: a new generation of AI technology to
meet the needs of science [59.261050918992325]
We outline emerging opportunities and challenges to enhance the utility of AI for scientific discovery.
The distinct goals of AI for industry versus the goals of AI for science create tension between identifying patterns in data versus discovering patterns in the world from data.
arXiv Detail & Related papers (2021-11-27T00:55:21Z) - Stakeholder Participation in AI: Beyond "Add Diverse Stakeholders and
Stir" [76.44130385507894]
This paper aims to ground what we dub a 'participatory turn' in AI design by synthesizing existing literature on participation and through empirical analysis of its current practices.
Based on our literature synthesis and empirical research, this paper presents a conceptual framework for analyzing participatory approaches to AI design.
arXiv Detail & Related papers (2021-11-01T17:57:04Z) - AI in society and culture: decision making and values [0.0]
Several academic debates, social consultations and impact studies are available to reveal the key aspects of the changing human-machine ecosystem.
In details, sociocultural filters, taxonomy of human-machine decisions and perspectives of value-based AI are in the focus of this literature review.
For better understanding, it is proposed to invite stakeholders in the prepared large-scale survey about the next generation AI that investigates issues that go beyond the technology.
arXiv Detail & Related papers (2020-04-29T07:09:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.