Causal Discovery from Poisson Branching Structural Causal Model Using High-Order Cumulant with Path Analysis
- URL: http://arxiv.org/abs/2403.16523v1
- Date: Mon, 25 Mar 2024 08:06:08 GMT
- Title: Causal Discovery from Poisson Branching Structural Causal Model Using High-Order Cumulant with Path Analysis
- Authors: Jie Qiao, Yu Xiang, Zhengming Chen, Ruichu Cai, Zhifeng Hao,
- Abstract summary: One of the most common characteristics of count data is the inherent branching structure described by a binomial thinning operator.
A single causal pair is Markov equivalent, i.e., $Xrightarrow Y$ and $Yrightarrow X$ are distributed equivalent.
We propose a Poisson Branching Structure Causal Model (PB-SCM) and perform a path analysis on PB-SCM using high-order cumulants.
- Score: 24.826219353338132
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Count data naturally arise in many fields, such as finance, neuroscience, and epidemiology, and discovering causal structure among count data is a crucial task in various scientific and industrial scenarios. One of the most common characteristics of count data is the inherent branching structure described by a binomial thinning operator and an independent Poisson distribution that captures both branching and noise. For instance, in a population count scenario, mortality and immigration contribute to the count, where survival follows a Bernoulli distribution, and immigration follows a Poisson distribution. However, causal discovery from such data is challenging due to the non-identifiability issue: a single causal pair is Markov equivalent, i.e., $X\rightarrow Y$ and $Y\rightarrow X$ are distributed equivalent. Fortunately, in this work, we found that the causal order from $X$ to its child $Y$ is identifiable if $X$ is a root vertex and has at least two directed paths to $Y$, or the ancestor of $X$ with the most directed path to $X$ has a directed path to $Y$ without passing $X$. Specifically, we propose a Poisson Branching Structure Causal Model (PB-SCM) and perform a path analysis on PB-SCM using high-order cumulants. Theoretical results establish the connection between the path and cumulant and demonstrate that the path information can be obtained from the cumulant. With the path information, causal order is identifiable under some graphical conditions. A practical algorithm for learning causal structure under PB-SCM is proposed and the experiments demonstrate and verify the effectiveness of the proposed method.
Related papers
- Identifying General Mechanism Shifts in Linear Causal Representations [58.6238439611389]
We consider the linear causal representation learning setting where we observe a linear mixing of $d$ unknown latent factors.
Recent work has shown that it is possible to recover the latent factors as well as the underlying structural causal model over them.
We provide a surprising identifiability result that it is indeed possible, under some very mild standard assumptions, to identify the set of shifted nodes.
arXiv Detail & Related papers (2024-10-31T15:56:50Z) - Statistical-Computational Trade-offs for Density Estimation [60.81548752871115]
We show that for a broad class of data structures their bounds cannot be significantly improved.
This is a novel emphstatistical-computational trade-off for density estimation.
arXiv Detail & Related papers (2024-10-30T15:03:33Z) - Computational-Statistical Gaps in Gaussian Single-Index Models [77.1473134227844]
Single-Index Models are high-dimensional regression problems with planted structure.
We show that computationally efficient algorithms, both within the Statistical Query (SQ) and the Low-Degree Polynomial (LDP) framework, necessarily require $Omega(dkstar/2)$ samples.
arXiv Detail & Related papers (2024-03-08T18:50:19Z) - Generalized Independent Noise Condition for Estimating Causal Structure with Latent Variables [28.44175079713669]
We propose a Generalized Independent Noise (GIN) condition for linear non-Gaussian acyclic causal models.
We show that the causal structure of a LiNGLaH is identifiable in light of GIN conditions.
arXiv Detail & Related papers (2023-08-13T08:13:34Z) - Reinterpreting causal discovery as the task of predicting unobserved
joint statistics [15.088547731564782]
We argue that causal discovery can help inferring properties of the unobserved joint distributions'
We define a learning scenario where the input is a subset of variables and the label is some statistical property of that subset.
arXiv Detail & Related papers (2023-05-11T15:30:54Z) - On the Identifiability and Estimation of Causal Location-Scale Noise
Models [122.65417012597754]
We study the class of location-scale or heteroscedastic noise models (LSNMs)
We show the causal direction is identifiable up to some pathological cases.
We propose two estimators for LSNMs: an estimator based on (non-linear) feature maps, and one based on neural networks.
arXiv Detail & Related papers (2022-10-13T17:18:59Z) - Causal Bandits for Linear Structural Equation Models [58.2875460517691]
This paper studies the problem of designing an optimal sequence of interventions in a causal graphical model.
It is assumed that the graph's structure is known and has $N$ nodes.
Two algorithms are proposed for the frequentist (UCB-based) and Bayesian settings.
arXiv Detail & Related papers (2022-08-26T16:21:31Z) - Causal Inference Despite Limited Global Confounding via Mixture Models [4.721845865189578]
A finite $k$-mixture of such models is graphically represented by a larger graph.
We give the first algorithm to learn mixtures of non-empty DAGs.
arXiv Detail & Related papers (2021-12-22T01:04:50Z) - Causal Expectation-Maximisation [70.45873402967297]
We show that causal inference is NP-hard even in models characterised by polytree-shaped graphs.
We introduce the causal EM algorithm to reconstruct the uncertainty about the latent variables from data about categorical manifest variables.
We argue that there appears to be an unnoticed limitation to the trending idea that counterfactual bounds can often be computed without knowledge of the structural equations.
arXiv Detail & Related papers (2020-11-04T10:25:13Z) - Generalized Independent Noise Condition for Estimating Latent Variable
Causal Graphs [39.24319581164022]
We propose a Generalized Independent Noise (GIN) condition to estimate latent variable graphs.
We show that GIN helps locate latent variables and identify their causal structure, including causal directions.
arXiv Detail & Related papers (2020-10-10T06:11:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.