ModeTv2: GPU-accelerated Motion Decomposition Transformer for Pairwise Optimization in Medical Image Registration
- URL: http://arxiv.org/abs/2403.16526v1
- Date: Mon, 25 Mar 2024 08:09:22 GMT
- Title: ModeTv2: GPU-accelerated Motion Decomposition Transformer for Pairwise Optimization in Medical Image Registration
- Authors: Haiqiao Wang, Zhuoyuan Wang, Dong Ni, Yi Wang,
- Abstract summary: Deformable image registration plays a crucial role in medical imaging, aiding in disease diagnosis and image-guided interventions.
Traditional iterative methods are slow, while deep learning (DL) accelerates solutions but faces usability and precision challenges.
This study introduces a pyramid network with the enhanced motion Transformer (ModeTv2) operator, showcasing superior pairwise optimization (PO) akin to traditional methods.
- Score: 6.217733993535475
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Deformable image registration plays a crucial role in medical imaging, aiding in disease diagnosis and image-guided interventions. Traditional iterative methods are slow, while deep learning (DL) accelerates solutions but faces usability and precision challenges. This study introduces a pyramid network with the enhanced motion decomposition Transformer (ModeTv2) operator, showcasing superior pairwise optimization (PO) akin to traditional methods. We re-implement ModeT operator with CUDA extensions to enhance its computational efficiency. We further propose RegHead module which refines deformation fields, improves the realism of deformation and reduces parameters. By adopting the PO, the proposed network balances accuracy, efficiency, and generalizability. Extensive experiments on two public brain MRI datasets and one abdominal CT dataset demonstrate the network's suitability for PO, providing a DL model with enhanced usability and interpretability. The code is publicly available.
Related papers
- Binarized Diffusion Model for Image Super-Resolution [61.963833405167875]
Binarization, an ultra-compression algorithm, offers the potential for effectively accelerating advanced diffusion models (DMs)
Existing binarization methods result in significant performance degradation.
We introduce a novel binarized diffusion model, BI-DiffSR, for image SR.
arXiv Detail & Related papers (2024-06-09T10:30:25Z) - Dual-scale Enhanced and Cross-generative Consistency Learning for Semi-supervised Medical Image Segmentation [49.57907601086494]
Medical image segmentation plays a crucial role in computer-aided diagnosis.
We propose a novel Dual-scale Enhanced and Cross-generative consistency learning framework for semi-supervised medical image (DEC-Seg)
arXiv Detail & Related papers (2023-12-26T12:56:31Z) - SeUNet-Trans: A Simple yet Effective UNet-Transformer Model for Medical
Image Segmentation [0.0]
We propose a simple yet effective UNet-Transformer (seUNet-Trans) model for medical image segmentation.
In our approach, the UNet model is designed as a feature extractor to generate multiple feature maps from the input images.
By leveraging the UNet architecture and the self-attention mechanism, our model not only retains the preservation of both local and global context information but also is capable of capturing long-range dependencies between input elements.
arXiv Detail & Related papers (2023-10-16T01:13:38Z) - Latent Diffusion Model for Medical Image Standardization and Enhancement [11.295078152769559]
DiffusionCT is a score-based DDPM model that transforms disparate non-standard distributions into a standardized form.
The architecture comprises a U-Net-based encoder-decoder, augmented by a DDPM model integrated at the bottleneck position.
Empirical tests on patient CT images indicate notable improvements in image standardization using DiffusionCT.
arXiv Detail & Related papers (2023-10-08T17:11:14Z) - ModeT: Learning Deformable Image Registration via Motion Decomposition
Transformer [7.629385629884155]
We propose a novel motion decomposition Transformer (ModeT) to explicitly model multiple motion modalities.
Our method outperforms current state-of-the-art registration networks and Transformers.
arXiv Detail & Related papers (2023-06-09T06:00:05Z) - Stable Optimization for Large Vision Model Based Deep Image Prior in
Cone-Beam CT Reconstruction [6.558735319783205]
Large Vision Model (LVM) has recently demonstrated great potential for medical imaging tasks.
Deep Image Prior (DIP) effectively guides an untrained neural network to generate high-quality CBCT images without any training data.
We propose a stable optimization method for the forward-model-free DIP model for sparse-view CBCT.
arXiv Detail & Related papers (2022-03-23T15:16:29Z) - Neural Data-Dependent Transform for Learned Image Compression [72.86505042102155]
We build a neural data-dependent transform and introduce a continuous online mode decision mechanism to jointly optimize the coding efficiency for each individual image.
The experimental results show the effectiveness of the proposed neural-syntax design and the continuous online mode decision mechanism.
arXiv Detail & Related papers (2022-03-09T14:56:48Z) - InDuDoNet+: A Model-Driven Interpretable Dual Domain Network for Metal
Artifact Reduction in CT Images [53.4351366246531]
We construct a novel interpretable dual domain network, termed InDuDoNet+, into which CT imaging process is finely embedded.
We analyze the CT values among different tissues, and merge the prior observations into a prior network for our InDuDoNet+, which significantly improve its generalization performance.
arXiv Detail & Related papers (2021-12-23T15:52:37Z) - Enhancing MR Image Segmentation with Realistic Adversarial Data
Augmentation [17.539828821476224]
We propose an adversarial data augmentation approach to improve the efficiency in utilizing training data.
We present a generic task-driven learning framework, which jointly optimize a data augmentation model and a segmentation network during training.
The proposed adversarial data augmentation does not rely on generative networks and can be used as a plug-in module in general segmentation networks.
arXiv Detail & Related papers (2021-08-07T11:32:37Z) - Robust Reference-based Super-Resolution via C2-Matching [77.51610726936657]
Super-Resolution (Ref-SR) has recently emerged as a promising paradigm to enhance a low-resolution (LR) input image by introducing an additional high-resolution (HR) reference image.
Existing Ref-SR methods mostly rely on implicit correspondence matching to borrow HR textures from reference images to compensate for the information loss in input images.
We propose C2-Matching, which produces explicit robust matching crossing transformation and resolution.
arXiv Detail & Related papers (2021-06-03T16:40:36Z) - Learning Deformable Image Registration from Optimization: Perspective,
Modules, Bilevel Training and Beyond [62.730497582218284]
We develop a new deep learning based framework to optimize a diffeomorphic model via multi-scale propagation.
We conduct two groups of image registration experiments on 3D volume datasets including image-to-atlas registration on brain MRI data and image-to-image registration on liver CT data.
arXiv Detail & Related papers (2020-04-30T03:23:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.