論文の概要: Accelerating Federated Learning by Selecting Beneficial Herd of Local Gradients
- arxiv url: http://arxiv.org/abs/2403.16557v1
- Date: Mon, 25 Mar 2024 09:16:59 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-26 15:18:23.216241
- Title: Accelerating Federated Learning by Selecting Beneficial Herd of Local Gradients
- Title(参考訳): 局所勾配の有効群選択によるフェデレーション学習の促進
- Authors: Ping Luo, Xiaoge Deng, Ziqing Wen, Tao Sun, Dongsheng Li,
- Abstract要約: Federated Learning (FL) は、通信ネットワークシステムにおける分散機械学習フレームワークである。
非独立分散(Non-IID)データは、大域モデルの収束効率に悪影響を及ぼす。
FLモデルの収束を加速するために,局所勾配の有利な群を選別するBHerd戦略を提案する。
- 参考スコア(独自算出の注目度): 40.84399531998246
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Federated Learning (FL) is a distributed machine learning framework in communication network systems. However, the systems' Non-Independent and Identically Distributed (Non-IID) data negatively affect the convergence efficiency of the global model, since only a subset of these data samples are beneficial for model convergence. In pursuit of this subset, a reliable approach involves determining a measure of validity to rank the samples within the dataset. In this paper, We propose the BHerd strategy which selects a beneficial herd of local gradients to accelerate the convergence of the FL model. Specifically, we map the distribution of the local dataset to the local gradients and use the Herding strategy to obtain a permutation of the set of gradients, where the more advanced gradients in the permutation are closer to the average of the set of gradients. These top portion of the gradients will be selected and sent to the server for global aggregation. We conduct experiments on different datasets, models and scenarios by building a prototype system, and experimental results demonstrate that our BHerd strategy is effective in selecting beneficial local gradients to mitigate the effects brought by the Non-IID dataset, thus accelerating model convergence.
- Abstract(参考訳): Federated Learning (FL) は、通信ネットワークシステムにおける分散機械学習フレームワークである。
しかし、非独立分散(Non-IID)データは、これらのデータサンプルのサブセットのみがモデル収束に有用であるため、大域的モデルの収束効率に悪影響を及ぼす。
このサブセットを追求する上で、信頼できるアプローチでは、データセット内のサンプルをランク付けする妥当性の尺度を決定する必要がある。
本稿では,FLモデルの収束を早めるために,局所勾配の有益な群落を選択するBHerd戦略を提案する。
具体的には、局所的なデータセットの分布を局所勾配にマッピングし、Herding戦略を用いて勾配の集合の置換を求める。
これらの勾配の上位部分は、グローバルアグリゲーションのためにサーバに選択され、送信されます。
我々は,プロトタイプシステムを構築することで,異なるデータセット,モデル,シナリオについて実験を行い,BHerd戦略が有効な局所勾配の選択に有効であることを示し,非IIDデータセットがもたらす影響を緩和し,モデル収束を加速することを示した。
関連論文リスト
- Exploring Selective Layer Fine-Tuning in Federated Learning [48.470385357429215]
フェデレートラーニング(FL)は,分散データを用いた基礎モデルの微調整のための,有望なパラダイムとして登場した。
FLにおける選択的層微調整について検討し、クライアントがローカルデータやリソースに応じて選択した層を調整できるフレキシブルなアプローチを強調した。
論文 参考訳(メタデータ) (2024-08-28T07:48:39Z) - GIFD: A Generative Gradient Inversion Method with Feature Domain
Optimization [52.55628139825667]
Federated Learning(FL)は、クライアントのプライバシを保護するための有望な分散機械学習フレームワークとして登場した。
近年の研究では、事前学習された生成逆ネットワーク(GAN)を事前知識として活用することにより、攻撃者が共有勾配を逆転し、FLシステムに対する機密データを回復できることが示されている。
textbfGradient textbfInversion over textbfFeature textbfDomains (GIFD)を提案する。
論文 参考訳(メタデータ) (2023-08-09T04:34:21Z) - Consistency Regularization for Generalizable Source-free Domain
Adaptation [62.654883736925456]
ソースフリードメイン適応(source-free domain adapt, SFDA)は、ソースデータセットにアクセスすることなく、十分にトレーニングされたソースモデルを未学習のターゲットドメインに適応することを目的としている。
既存のSFDAメソッドは、ターゲットのトレーニングセット上で適用されたモデルを評価し、目に見えないが同一の分散テストセットからデータを無視する。
より一般化可能なSFDA法を開発するための整合正則化フレームワークを提案する。
論文 参考訳(メタデータ) (2023-08-03T07:45:53Z) - FedAgg: Adaptive Federated Learning with Aggregated Gradients [1.5653612447564105]
我々はFedAggと呼ばれる適応型FEDerated Learningアルゴリズムを提案し、局所モデルパラメータと平均モデルパラメータのばらつきを緩和し、高速モデル収束率を得る。
IIDおよび非IIDデータセット下でのモデル性能の向上と収束速度の促進を目的として,本手法が既存のFL戦略よりも優れていることを示す。
論文 参考訳(メタデータ) (2023-03-28T08:07:28Z) - Divide and Contrast: Source-free Domain Adaptation via Adaptive
Contrastive Learning [122.62311703151215]
Divide and Contrast (DaC) は、それぞれの制限を回避しつつ、両方の世界の善良な端を接続することを目的としている。
DaCは、ターゲットデータをソースライクなサンプルとターゲット固有なサンプルに分割する。
さらに、ソースライクなドメインと、メモリバンクベースの最大平均離散性(MMD)損失を用いて、ターゲット固有のサンプルとを整合させて、分散ミスマッチを低減する。
論文 参考訳(メタデータ) (2022-11-12T09:21:49Z) - Depersonalized Federated Learning: Tackling Statistical Heterogeneity by
Alternating Stochastic Gradient Descent [6.394263208820851]
フェデレート・ラーニング(FL)は、デバイスがデータ共有なしでインテリジェントな推論のために共通の機械学習(ML)モデルをトレーニングすることを可能にする。
様々な共役者によって保持される生データは、常に不特定に分散される。
本稿では,このプロセスのデスピードにより統計的に大幅に最適化できる新しいFLを提案する。
論文 参考訳(メタデータ) (2022-10-07T10:30:39Z) - CAFE: Learning to Condense Dataset by Aligning Features [72.99394941348757]
本稿ではCAFE(Aligning features)によるCondenseデータセットの新しいスキームを提案する。
このアプローチの核心は、さまざまなスケールにわたる実データと合成データから機能を整合させる効果的な戦略です。
提案したCAFEを様々なデータセットで検証し,概ね最先端技術であることを示す。
論文 参考訳(メタデータ) (2022-03-03T05:58:49Z) - Robust Convergence in Federated Learning through Label-wise Clustering [6.693651193181458]
非IIDデータセットとローカルクライアントの不均一環境は、フェデレートラーニング(FL)における主要な課題であると見なされる
地理的に異質なローカルクライアント間のトレーサビリティを保証する新しいラベルワイドクラスタリングアルゴリズムを提案する。
提案手法は,他のFLアルゴリズムと比較して,高速でロバストな収束を示す。
論文 参考訳(メタデータ) (2021-12-28T18:13:09Z) - Client Selection in Federated Learning based on Gradients Importance [5.263296985310379]
フェデレートラーニング(FL)は、複数のデバイスが個人データを共有せずにグローバルモデルを協調的に学習することを可能にする。
本稿では,勾配規範の重要性に基づいて,デバイス選択戦略を検討・設計する。
論文 参考訳(メタデータ) (2021-11-19T11:53:23Z) - Analysis and Optimal Edge Assignment For Hierarchical Federated Learning
on Non-IID Data [43.32085029569374]
フェデレーション学習アルゴリズムは、ユーザのデバイスに格納された分散および多様なデータを活用して、グローバルな現象を学習することを目的としている。
参加者のデータが強く歪んだ場合(例えば、非iidの場合)、ローカルモデルはローカルデータに過剰に適合し、低パフォーマンスなグローバルモデルに繋がる。
ユーザエッジ層にFederated Gradient Descent、エッジクラウド層にFederated Averagingを実行する階層学習システムを提案する。
論文 参考訳(メタデータ) (2020-12-10T12:18:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。