論文の概要: Distributed collaborative anomalous sound detection by embedding sharing
- arxiv url: http://arxiv.org/abs/2403.16610v1
- Date: Mon, 25 Mar 2024 10:40:04 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-26 15:08:28.646674
- Title: Distributed collaborative anomalous sound detection by embedding sharing
- Title(参考訳): 埋め込み共有による分散協調的異常音検出
- Authors: Kota Dohi, Yohei Kawaguchi,
- Abstract要約: 本稿では,複数のクライアントが協調して異常音検出モデルを学習する手法について検討する。
提案手法では,各クライアントが音響データ分類のために開発した共通事前学習モデルを用いて埋め込みを計算する。
実験の結果,提案手法は異常音検出のAUCを平均6.8%改善することがわかった。
- 参考スコア(独自算出の注目度): 4.327763441385372
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: To develop a machine sound monitoring system, a method for detecting anomalous sound is proposed. In this paper, we explore a method for multiple clients to collaboratively learn an anomalous sound detection model while keeping their raw data private from each other. In the context of industrial machine anomalous sound detection, each client possesses data from different machines or different operational states, making it challenging to learn through federated learning or split learning. In our proposed method, each client calculates embeddings using a common pre-trained model developed for sound data classification, and these calculated embeddings are aggregated on the server to perform anomalous sound detection through outlier exposure. Experiments showed that our proposed method improves the AUC of anomalous sound detection by an average of 6.8%.
- Abstract(参考訳): 機械音モニタリングシステムを開発するために,異常音を検出する手法を提案する。
本稿では,複数のクライアントが生データを互いにプライベートに保ちながら,異常音検出モデルを協調的に学習する手法を提案する。
産業機械異常音検出の文脈では、各クライアントは異なるマシンまたは異なる運用状態のデータを保有しており、連合学習や分割学習による学習が困難である。
提案手法では,各クライアントが音響データ分類用に開発した共通事前学習モデルを用いて埋め込みを計算し,これらの埋め込みをサーバに集約し,外周露光による異常音検出を行う。
実験の結果,提案手法は異常音検出のAUCを平均6.8%改善することがわかった。
関連論文リスト
- A contrastive-learning approach for auditory attention detection [11.28441753596964]
本稿では,参加音声信号の潜在表現と対応する脳波信号との差を最小化するために,自己教師付き学習に基づく手法を提案する。
この結果と以前に公表した手法を比較し,検証セット上での最先端のパフォーマンスを実現する。
論文 参考訳(メタデータ) (2024-10-24T03:13:53Z) - MIMII-Gen: Generative Modeling Approach for Simulated Evaluation of Anomalous Sound Detection System [5.578413517654703]
不十分な記録と異常の不足は、堅牢な異常検出システムを開発する上で重要な課題である。
本稿では,エンコーダ・デコーダ・フレームワークを統合した遅延拡散モデルを用いて,機械音の多様な異常を生成する手法を提案する。
論文 参考訳(メタデータ) (2024-09-27T08:21:31Z) - DiffSED: Sound Event Detection with Denoising Diffusion [70.18051526555512]
生成学習の観点からSED問題を再構築する。
具体的には,騒音拡散過程において,雑音のある提案から音の時間境界を生成することを目的としている。
トレーニング中は,ノイズの多い遅延クエリを基本バージョンに変換することで,ノイズ発生過程の逆転を学習する。
論文 参考訳(メタデータ) (2023-08-14T17:29:41Z) - Anomalous Sound Detection using Audio Representation with Machine ID
based Contrastive Learning Pretraining [52.191658157204856]
コントラスト学習を用いて、各音声サンプルではなく、各機械IDの音声表現を洗練する。
提案手法では、コントラスト学習を用いて音声表現モデルを事前学習する。
実験の結果,本手法はコントラスト学習や自己教師型分類を用いて最先端の手法よりも優れていた。
論文 参考訳(メタデータ) (2023-04-07T11:08:31Z) - The role of noise in denoising models for anomaly detection in medical
images [62.0532151156057]
病理脳病変は脳画像に多彩な外観を示す。
正規データのみを用いた教師なし異常検出手法が提案されている。
空間分解能の最適化と雑音の大きさの最適化により,異なるモデル学習体制の性能が向上することを示す。
論文 参考訳(メタデータ) (2023-01-19T21:39:38Z) - Decision Forest Based EMG Signal Classification with Low Volume Dataset
Augmented with Random Variance Gaussian Noise [51.76329821186873]
我々は6種類の手振りを限定的なサンプル数で分類できるモデルを作成し、より広い聴衆によく一般化する。
信号のランダムなバウンドの使用など、より基本的な手法のセットにアピールするが、これらの手法がオンライン環境で持てる力を示したいと考えている。
論文 参考訳(メタデータ) (2022-06-29T23:22:18Z) - Canonical Polyadic Decomposition and Deep Learning for Machine Fault
Detection [0.0]
マシンからあらゆる種類の障害を学ぶのに十分なデータを集めることは不可能である。
健康状態のみのデータを用いてトレーニングされた新しいアルゴリズムを開発し、教師なしの異常検出を行った。
これらのアルゴリズムの開発における重要な問題は、異常検出性能に影響を与える信号のノイズである。
論文 参考訳(メタデータ) (2021-07-20T14:06:50Z) - Visualizing Classifier Adjacency Relations: A Case Study in Speaker
Verification and Voice Anti-Spoofing [72.4445825335561]
任意のバイナリ分類器によって生成される検出スコアから2次元表現を導出する簡単な方法を提案する。
ランク相関に基づいて,任意のスコアを用いた分類器の視覚的比較を容易にする。
提案手法は完全に汎用的であり,任意の検出タスクに適用可能だが,自動話者検証と音声アンチスプーフィングシステムによるスコアを用いた手法を実証する。
論文 参考訳(メタデータ) (2021-06-11T13:03:33Z) - Unsupervised Domain Adaptation for Acoustic Scene Classification Using
Band-Wise Statistics Matching [69.24460241328521]
機械学習アルゴリズムは、トレーニング(ソース)とテスト(ターゲット)データの分散のミスマッチの影響を受けやすい。
本研究では,ターゲット領域音響シーンの各周波数帯域の1次及び2次サンプル統計値と,ソース領域学習データセットの1次と2次サンプル統計値との整合性を有する教師なし領域適応手法を提案する。
提案手法は,文献にみられる最先端の教師なし手法よりも,ソース・ドメインの分類精度とターゲット・ドメインの分類精度の両面で優れていることを示す。
論文 参考訳(メタデータ) (2020-04-30T23:56:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。