SDXS: Real-Time One-Step Latent Diffusion Models with Image Conditions
- URL: http://arxiv.org/abs/2403.16627v2
- Date: Wed, 17 Apr 2024 02:57:58 GMT
- Title: SDXS: Real-Time One-Step Latent Diffusion Models with Image Conditions
- Authors: Yuda Song, Zehao Sun, Xuanwu Yin,
- Abstract summary: We present two models, SDXS-512 and SDXS-1024, achieving inference speeds of approximately 100 FPS (30x faster than SD v1.5) and 30 FPS (60x faster than SDXL) on a single GPU.
Our training approach offers promising applications in image-conditioned control, facilitating efficient image-to-image translation.
- Score: 5.100085108873068
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent advancements in diffusion models have positioned them at the forefront of image generation. Despite their superior performance, diffusion models are not without drawbacks; they are characterized by complex architectures and substantial computational demands, resulting in significant latency due to their iterative sampling process. To mitigate these limitations, we introduce a dual approach involving model miniaturization and a reduction in sampling steps, aimed at significantly decreasing model latency. Our methodology leverages knowledge distillation to streamline the U-Net and image decoder architectures, and introduces an innovative one-step DM training technique that utilizes feature matching and score distillation. We present two models, SDXS-512 and SDXS-1024, achieving inference speeds of approximately 100 FPS (30x faster than SD v1.5) and 30 FPS (60x faster than SDXL) on a single GPU, respectively. Moreover, our training approach offers promising applications in image-conditioned control, facilitating efficient image-to-image translation.
Related papers
- Fast constrained sampling in pre-trained diffusion models [77.21486516041391]
Diffusion models have dominated the field of large, generative image models.
We propose an algorithm for fast-constrained sampling in large pre-trained diffusion models.
arXiv Detail & Related papers (2024-10-24T14:52:38Z) - Simplifying, Stabilizing and Scaling Continuous-Time Consistency Models [7.254959022456085]
Consistency models (CMs) are a powerful class of diffusion-based generative models for fast sampling.
Most existing CMs are trained using discretized timesteps, which introduce additional hyper parameters and are prone to discretization errors.
We propose a simplified theoretical framework that unifies previous parameterizations of diffusion models and CMs, identifying the root causes of instability.
Our proposed training algorithm achieves FID scores of 2.06 on CIFAR-10, 1.48 on ImageNet 64x64, and 1.88 on ImageNet 512x512, narrowing the gap in FID scores with the
arXiv Detail & Related papers (2024-10-14T20:43:25Z) - Alleviating Distortion in Image Generation via Multi-Resolution Diffusion Models [26.926712014346432]
This paper presents innovative enhancements to diffusion models by integrating a novel multi-resolution network and time-dependent layer normalization.
Our method's efficacy is demonstrated on the class-conditional ImageNet generation benchmark, setting new state-of-the-art FID scores of 1.70 on ImageNet 256 x 256 and 2.89 on ImageNet 512 x 512.
arXiv Detail & Related papers (2024-06-13T17:59:58Z) - A-SDM: Accelerating Stable Diffusion through Redundancy Removal and
Performance Optimization [54.113083217869516]
In this work, we first explore the computational redundancy part of the network.
We then prune the redundancy blocks of the model and maintain the network performance.
Thirdly, we propose a global-regional interactive (GRI) attention to speed up the computationally intensive attention part.
arXiv Detail & Related papers (2023-12-24T15:37:47Z) - Latent Consistency Models: Synthesizing High-Resolution Images with
Few-Step Inference [60.32804641276217]
We propose Latent Consistency Models (LCMs), enabling swift inference with minimal steps on any pre-trained LDMs.
A high-quality 768 x 768 24-step LCM takes only 32 A100 GPU hours for training.
We also introduce Latent Consistency Fine-tuning (LCF), a novel method that is tailored for fine-tuning LCMs on customized image datasets.
arXiv Detail & Related papers (2023-10-06T17:11:58Z) - AutoDiffusion: Training-Free Optimization of Time Steps and
Architectures for Automated Diffusion Model Acceleration [57.846038404893626]
We propose to search the optimal time steps sequence and compressed model architecture in a unified framework to achieve effective image generation for diffusion models without any further training.
Experimental results show that our method achieves excellent performance by using only a few time steps, e.g. 17.86 FID score on ImageNet 64 $times$ 64 with only four steps, compared to 138.66 with DDIM.
arXiv Detail & Related papers (2023-09-19T08:57:24Z) - Consistency Models [89.68380014789861]
We propose a new family of models that generate high quality samples by directly mapping noise to data.
They support fast one-step generation by design, while still allowing multistep sampling to trade compute for sample quality.
They also support zero-shot data editing, such as image inpainting, colorization, and super-resolution, without requiring explicit training.
arXiv Detail & Related papers (2023-03-02T18:30:16Z) - On Distillation of Guided Diffusion Models [94.95228078141626]
We propose an approach to distilling classifier-free guided diffusion models into models that are fast to sample from.
For standard diffusion models trained on the pixelspace, our approach is able to generate images visually comparable to that of the original model.
For diffusion models trained on the latent-space (e.g., Stable Diffusion), our approach is able to generate high-fidelity images using as few as 1 to 4 denoising steps.
arXiv Detail & Related papers (2022-10-06T18:03:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.