論文の概要: One-Shot Domain Incremental Learning
- arxiv url: http://arxiv.org/abs/2403.16707v1
- Date: Mon, 25 Mar 2024 12:44:52 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-26 14:48:50.907010
- Title: One-Shot Domain Incremental Learning
- Title(参考訳): ワンショットドメインインクリメンタルラーニング
- Authors: Yasushi Esaki, Satoshi Koide, Takuro Kutsuna,
- Abstract要約: ドメインインクリメンタルラーニング(DIL)は、分類のためのディープニューラルネットワークモデルに関する過去の研究で議論されてきた。
既存のDILメソッドはワンショットDILではうまく動作しないことを示す。
本稿では,これらの統計値に関する手法を提案し,オープンデータセットを用いた実験により,本手法の有効性を実証する。
- 参考スコア(独自算出の注目度): 5.420973997918629
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Domain incremental learning (DIL) has been discussed in previous studies on deep neural network models for classification. In DIL, we assume that samples on new domains are observed over time. The models must classify inputs on all domains. In practice, however, we may encounter a situation where we need to perform DIL under the constraint that the samples on the new domain are observed only infrequently. Therefore, in this study, we consider the extreme case where we have only one sample from the new domain, which we call one-shot DIL. We first empirically show that existing DIL methods do not work well in one-shot DIL. We have analyzed the reason for this failure through various investigations. According to our analysis, we clarify that the difficulty of one-shot DIL is caused by the statistics in the batch normalization layers. Therefore, we propose a technique regarding these statistics and demonstrate the effectiveness of our technique through experiments on open datasets.
- Abstract(参考訳): ドメインインクリメンタルラーニング(DIL)は、分類のためのディープニューラルネットワークモデルに関する過去の研究で議論されてきた。
DILでは、新しいドメインのサンプルは時間とともに観察されると仮定する。
モデルはすべてのドメインの入力を分類しなければなりません。
しかし、実際には、新しいドメインのサンプルが頻繁にのみ観察されるという制約の下でDILを実行する必要がある場合があります。
そこで本研究では,新しいドメインから1つのサンプルしか持たない極端事例を考察し,これをワンショットDILと呼ぶ。
まず、既存のDILメソッドがワンショットDILではうまく動作しないことを示す。
我々は、様々な調査を通じて、この失敗の理由を分析した。
本分析により, バッチ正規化層におけるDILの難易度は, バッチ正規化層の統計値から生じることが明らかとなった。
そこで本稿では,これらの統計に関する手法を提案し,オープンデータセットを用いた実験を通じて,本手法の有効性を実証する。
関連論文リスト
- Hypothesis-Driven Deep Learning for Out of Distribution Detection [0.8191518216608217]
本稿では,新しいサンプルがInDなのかOoDなのかを定量化する仮説駆動型手法を提案する。
細菌のサンプルを学習した深層学習モデルに適応させ,InDとOoDの潜伏反応の解釈的差異を明らかにする。
論文 参考訳(メタデータ) (2024-03-21T01:06:47Z) - Continuous Unsupervised Domain Adaptation Using Stabilized
Representations and Experience Replay [23.871860648919593]
本稿では,教師なしドメイン適応(UDA)問題に継続学習(CL)シナリオで対処するアルゴリズムを提案する。
我々の解は、学習した内部分布を安定化し、新しい領域におけるモデル一般化を強化することに基づいている。
経験リプレイを活用して,新たなタスクを学習する際に獲得した知識をモデルが失う,破滅的な忘れ事の問題を克服する。
論文 参考訳(メタデータ) (2024-01-31T05:09:14Z) - SALUDA: Surface-based Automotive Lidar Unsupervised Domain Adaptation [62.889835139583965]
我々は、ソースデータとターゲットデータに基づいて、暗黙の基盤となる表面表現を同時に学習する教師なし補助タスクを導入する。
両方のドメインが同じ遅延表現を共有しているため、モデルは2つのデータソース間の不一致を許容せざるを得ない。
実験の結果,本手法は実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-
論文 参考訳(メタデータ) (2023-04-06T17:36:23Z) - Domain-Specific Risk Minimization for Out-of-Distribution Generalization [104.17683265084757]
まず、適応性ギャップを明示的に考慮した一般化境界を確立する。
本稿では,目標に対するより良い仮説の選択を導くための効果的なギャップ推定法を提案する。
もう1つの方法は、オンラインターゲットサンプルを用いてモデルパラメータを適応させることにより、ギャップを最小化することである。
論文 参考訳(メタデータ) (2022-08-18T06:42:49Z) - IDANI: Inference-time Domain Adaptation via Neuron-level Interventions [24.60778570114818]
本稿では,ニューロンレベルの介入を用いたドメイン適応(DA)の新しいアプローチを提案する。
特定のニューロンにおける各テスト例の表現を変更した結果、ソースドメインからの逆実例が得られます。
実験の結果,本手法は未確認領域の性能向上を図っている。
論文 参考訳(メタデータ) (2022-06-01T06:39:28Z) - Learning to Generalize across Domains on Single Test Samples [126.9447368941314]
単体テストサンプルでドメインをまたいで一般化することを学ぶ。
変分ベイズ推論問題として単検体への適応を定式化する。
我々のモデルは、ドメインの一般化のための複数のベンチマークにおいて、最先端のメソッドよりも少なくとも同等で、より優れたパフォーマンスを達成します。
論文 参考訳(メタデータ) (2022-02-16T13:21:04Z) - Understanding Cross-Domain Few-Shot Learning: An Experimental Study [17.81177649496765]
ドメイン間数ショットの学習は、ソースとターゲットドメインの大きな違いを扱うために注目されている。
最近の研究は、事前訓練期間中に対象領域からの小規模な未ラベルデータを活用することを検討している。
このデータは、ソースドメインの教師付き事前トレーニングに加えて、ターゲットドメインでの自己教師付き事前トレーニングを可能にする。
論文 参考訳(メタデータ) (2022-02-01T12:35:25Z) - Improving Out-of-Distribution Robustness via Selective Augmentation [61.147630193060856]
機械学習アルゴリズムは、トレーニングとテスト例が同じ分布から引き出されると仮定する。
分散シフトは現実世界のアプリケーションでは一般的な問題であり、テスト時にモデルが劇的に悪化する可能性がある。
LISAと呼ばれる選択的な拡張によって不変関数を学習するミックスアップ方式を提案する。
論文 参考訳(メタデータ) (2022-01-02T05:58:33Z) - Sampling from Arbitrary Functions via PSD Models [55.41644538483948]
まず確率分布をモデル化し,そのモデルからサンプリングする。
これらのモデルでは, 少数の評価値を用いて, 高精度に多数の密度を近似することが可能であることが示され, それらのモデルから効果的にサンプルする簡単なアルゴリズムが提示される。
論文 参考訳(メタデータ) (2021-10-20T12:25:22Z) - Jo-SRC: A Contrastive Approach for Combating Noisy Labels [58.867237220886885]
Jo-SRC (Joint Sample Selection and Model Regularization based on Consistency) というノイズロバスト手法を提案する。
具体的には、対照的な学習方法でネットワークをトレーニングする。
各サンプルの2つの異なるビューからの予測は、クリーンまたは分布不足の「可能性」を推定するために使用されます。
論文 参考訳(メタデータ) (2021-03-24T07:26:07Z) - MOCCA: Multi-Layer One-Class ClassificAtion for Anomaly Detection [16.914663209964697]
我々は,Multi-Layer One-Class Classification (MOCCA) と呼ばれる異常検出問題に対するディープラーニングアプローチを提案する。
異なる深さで抽出された情報を利用して異常なデータインスタンスを検出することで、ディープニューラルネットワークのピースワイズ的性質を明示的に活用します。
本稿では,本手法が文献で利用可能な最先端手法と比較して優れた性能を示す。
論文 参考訳(メタデータ) (2020-12-09T08:32:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。