論文の概要: Synthetic Data Generation and Joint Learning for Robust Code-Mixed Translation
- arxiv url: http://arxiv.org/abs/2403.16771v2
- Date: Mon, 29 Apr 2024 20:45:53 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-01 18:58:59.619041
- Title: Synthetic Data Generation and Joint Learning for Robust Code-Mixed Translation
- Title(参考訳): ロバスト符号混合翻訳のための合成データ生成と共同学習
- Authors: Kartik Kartik, Sanjana Soni, Anoop Kunchukuttan, Tanmoy Chakraborty, Md Shad Akhtar,
- Abstract要約: 我々は、英語機械翻訳にコード混在(ヒングリッシュとベンガル語)の問題に取り組む。
実世界のコードミキシングテキストのノイズ処理を学習する,頑健な摂動に基づく共同学習モデルRCMTを提案する。
提案手法の評価と総合解析により,最先端のコード混合・ロバスト翻訳法よりもRCMTの方が優れていることが示された。
- 参考スコア(独自算出の注目度): 34.57825234659946
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The widespread online communication in a modern multilingual world has provided opportunities to blend more than one language (aka code-mixed language) in a single utterance. This has resulted a formidable challenge for the computational models due to the scarcity of annotated data and presence of noise. A potential solution to mitigate the data scarcity problem in low-resource setup is to leverage existing data in resource-rich language through translation. In this paper, we tackle the problem of code-mixed (Hinglish and Bengalish) to English machine translation. First, we synthetically develop HINMIX, a parallel corpus of Hinglish to English, with ~4.2M sentence pairs. Subsequently, we propose RCMT, a robust perturbation based joint-training model that learns to handle noise in the real-world code-mixed text by parameter sharing across clean and noisy words. Further, we show the adaptability of RCMT in a zero-shot setup for Bengalish to English translation. Our evaluation and comprehensive analyses qualitatively and quantitatively demonstrate the superiority of RCMT over state-of-the-art code-mixed and robust translation methods.
- Abstract(参考訳): 現代の多言語世界における広範なオンラインコミュニケーションは、複数の言語(いわゆるコード混合言語)を単一発話でブレンドする機会を与えてきた。
この結果、注釈付きデータの不足とノイズの存在により、計算モデルにとって大きな課題となった。
低リソースのセットアップでデータ不足を緩和する潜在的な解決策は、翻訳を通じてリソース豊富な言語で既存のデータを活用することである。
本稿では,コードミキシング(ヒングリッシュとベンガル語)と英語機械翻訳の問題に取り組む。
まず, Hinglish の英語への並列コーパスである HINMIX を, 約4.2M 文対で合成的に開発する。
次に、実世界のコード混在テキストのノイズをクリーンでノイズの多い単語間でパラメータ共有することで処理する、頑健な摂動に基づく共同学習モデルRCMTを提案する。
さらに,ベンガル語から英語への翻訳において,RCMTの適応性を示す。
我々の評価と総合分析は、最先端のコード混在および堅牢な翻訳法よりもRCMTの方が優れていることを質的かつ定量的に証明している。
関連論文リスト
- From Human Judgements to Predictive Models: Unravelling Acceptability in Code-Mixed Sentences [18.53327811304381]
コード混在テキストの受理性に関する人間の判断をモデル化することは、自然なコード混在テキストの識別に役立ちます。
クラインは16,642文のタイプの中で最大であり、2つの情報源から得られたサンプルで構成されている。
Clineを用いた実験では、コードミキシングのメトリクスのみに基づいて訓練された単純な多層パーセプトロン(MLP)モデルが、微調整された多言語大言語モデル(MLLM)より優れていることが示された。
論文 参考訳(メタデータ) (2024-05-09T06:40:39Z) - MoSECroT: Model Stitching with Static Word Embeddings for Crosslingual Zero-shot Transfer [50.40191599304911]
クロスリンガルゼロショット転送のための静的単語埋め込みを用いたMoSECroTモデルスティッチについて紹介する。
本稿では,ソースコードPLMの埋め込みと対象言語の静的単語埋め込みのための共通空間を構築するために,相対表現を利用した最初のフレームワークを提案する。
提案するフレームワークは,MoSECroTに対処する際,弱いベースラインと競合するが,強いベースラインに比べて競合する結果が得られないことを示す。
論文 参考訳(メタデータ) (2024-01-09T21:09:07Z) - Mixed-Distil-BERT: Code-mixed Language Modeling for Bangla, English, and Hindi [0.0]
我々は、バングラ語、英語、ヒンディー語で事前訓練された多言語モデルTri-Distil-BERTと、コードミックスデータに基づいて微調整されたMixed-Distil-BERTを紹介する。
我々の2層事前学習アプローチは、多言語およびコード混在言語理解のための効率的な代替手段を提供する。
論文 参考訳(メタデータ) (2023-09-19T02:59:41Z) - Simultaneous Machine Translation with Large Language Models [51.470478122113356]
我々は,SimulMTタスクに大規模言語モデルを適用する可能性を検討する。
MUST-Cデータセットと異なる9言語でtextttLlama2-7b-chatモデルを用いて実験を行った。
その結果,LLM は BLEU と LAAL の指標で専用MT モデルよりも優れていた。
論文 参考訳(メタデータ) (2023-09-13T04:06:47Z) - Mitigating Data Imbalance and Representation Degeneration in
Multilingual Machine Translation [103.90963418039473]
Bi-ACLは、MNMTモデルの性能を向上させるために、ターゲット側モノリンガルデータとバイリンガル辞書のみを使用するフレームワークである。
Bi-ACLは、長い尾の言語でも、高リソースの言語でも、より効果的であることを示す。
論文 参考訳(メタデータ) (2023-05-22T07:31:08Z) - Cross-Lingual Cross-Modal Retrieval with Noise-Robust Learning [25.230786853723203]
低リソース言語に対するノイズローバストな言語間クロスモーダル検索手法を提案する。
低リソース言語のための擬似並列文ペアを構築するために,機械翻訳を用いる。
ノイズロスのターゲット言語表現を学習するための多視点自己蒸留法を提案する。
論文 参考訳(メタデータ) (2022-08-26T09:32:24Z) - PreCogIIITH at HinglishEval : Leveraging Code-Mixing Metrics & Language
Model Embeddings To Estimate Code-Mix Quality [18.806186479627335]
我々は、コードミックス品質のレーティングを予測し、合成生成したコードミックステキストの品質に影響を与えるモデルを構築しようとしている。
INLG2022と協調した共有タスクであるHinglishEvalへの投稿で、私たちは、コードミックス品質のレーティングを予測することによって、合成されたコードミックステキストの品質に影響を与えるモデルを構築しようとしています。
論文 参考訳(メタデータ) (2022-06-16T08:00:42Z) - Exploring Text-to-Text Transformers for English to Hinglish Machine
Translation with Synthetic Code-Mixing [19.19256927651015]
モノリンガル英語のテキストをHinglish(コード混合ヒンディー語と英語)に変換するモデルを記述する。
事前訓練された言語モデルの最近の成功を踏まえ、トランスフォーマーベースのエンコーダデコーダモデルの実用性についても検証する。
私たちのモデルは、英語と英語の公式共有タスクの全体的なランキングで第一位です。
論文 参考訳(メタデータ) (2021-05-18T19:50:25Z) - Continual Mixed-Language Pre-Training for Extremely Low-Resource Neural
Machine Translation [53.22775597051498]
我々は,mbart を未熟な言語に効果的に適用するための,継続的な事前学習フレームワークを提案する。
その結果,mBARTベースラインの微調整性能を一貫して改善できることが示された。
私たちのアプローチは、両方の言語が元のmBARTの事前トレーニングで見られる翻訳ペアのパフォーマンスを高めます。
論文 参考訳(メタデータ) (2021-05-09T14:49:07Z) - Cross-lingual Machine Reading Comprehension with Language Branch
Knowledge Distillation [105.41167108465085]
言語間機械読解(CLMRC)は、ローソース言語に大規模なデータセットがないため、依然として難しい問題である。
本稿では,Language Branch Machine Reading (LBMRC) という新しい拡張手法を提案する。
LBMRCは、個々の言語に精通したMultiple Machine Read comprehension (MRC)モデルを訓練する。
複数の言語分岐モデルから全ての対象言語に対する単一モデルへのアマルガメート知識の多言語蒸留アプローチを考案する。
論文 参考訳(メタデータ) (2020-10-27T13:12:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。