論文の概要: HPL-ESS: Hybrid Pseudo-Labeling for Unsupervised Event-based Semantic Segmentation
- arxiv url: http://arxiv.org/abs/2403.16788v1
- Date: Mon, 25 Mar 2024 14:02:33 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-26 19:53:16.574687
- Title: HPL-ESS: Hybrid Pseudo-Labeling for Unsupervised Event-based Semantic Segmentation
- Title(参考訳): HPL-ESS: 教師なしイベントベースセマンティックセグメンテーションのためのハイブリッド擬似ラベル
- Authors: Linglin Jing, Yiming Ding, Yunpeng Gao, Zhigang Wang, Xu Yan, Dong Wang, Gerald Schaefer, Hui Fang, Bin Zhao, Xuelong Li,
- Abstract要約: 本稿では,教師なしイベントベースセマンティックセマンティックセグメンテーション(HPL-ESS)のためのハイブリッド擬似ラベルフレームワークを提案する。
提案手法は,DSEC-Semanticデータセットにおいて,既存の最先端手法よりも高い性能を示す。
- 参考スコア(独自算出の注目度): 47.271784693700845
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Event-based semantic segmentation has gained popularity due to its capability to deal with scenarios under high-speed motion and extreme lighting conditions, which cannot be addressed by conventional RGB cameras. Since it is hard to annotate event data, previous approaches rely on event-to-image reconstruction to obtain pseudo labels for training. However, this will inevitably introduce noise, and learning from noisy pseudo labels, especially when generated from a single source, may reinforce the errors. This drawback is also called confirmation bias in pseudo-labeling. In this paper, we propose a novel hybrid pseudo-labeling framework for unsupervised event-based semantic segmentation, HPL-ESS, to alleviate the influence of noisy pseudo labels. In particular, we first employ a plain unsupervised domain adaptation framework as our baseline, which can generate a set of pseudo labels through self-training. Then, we incorporate offline event-to-image reconstruction into the framework, and obtain another set of pseudo labels by predicting segmentation maps on the reconstructed images. A noisy label learning strategy is designed to mix the two sets of pseudo labels and enhance the quality. Moreover, we propose a soft prototypical alignment module to further improve the consistency of target domain features. Extensive experiments show that our proposed method outperforms existing state-of-the-art methods by a large margin on the DSEC-Semantic dataset (+5.88% accuracy, +10.32% mIoU), which even surpasses several supervised methods.
- Abstract(参考訳): イベントベースのセマンティックセグメンテーションは、従来のRGBカメラでは対処できない、高速な動きと極端な照明条件下でのシナリオを扱う能力によって人気を集めている。
イベントデータのアノテートは困難であるため,従来の手法では擬似ラベルの学習にイベント・ツー・イメージの再構築を頼っていた。
しかし、これは必然的にノイズを導入し、ノイズの多い擬似ラベルから学習し、特に単一ソースから生成された場合、エラーを補強する可能性がある。
この欠点は疑似ラベルの確認バイアスとも呼ばれる。
本稿では,教師なしイベントベースセマンティックセグメンテーションのためのハイブリッド擬似ラベルフレームワークHPL-ESSを提案する。
特に、まずベースラインとして非教師なしのドメイン適応フレームワークを使用し、自己学習によって擬似ラベルのセットを生成する。
そして、オフラインのイベント・ツー・イメージの再構成をフレームワークに組み込んで、再構成画像上のセグメントマップを予測して、別の擬似ラベルの集合を得る。
ノイズの多いラベル学習戦略は、2組の擬似ラベルを混合し、品質を高めるように設計されている。
さらに,対象領域の特徴の整合性をさらに向上するために,ソフトなプロトタイプアライメントモジュールを提案する。
DSEC-Semantic データセット (+5.88% 精度 +10.32% mIoU) において,提案手法は既存の最先端手法よりも高い性能を示した。
関連論文リスト
- Semantic Connectivity-Driven Pseudo-labeling for Cross-domain
Segmentation [89.41179071022121]
自己学習はドメイン間セマンティックセグメンテーションにおいて一般的なアプローチである。
本稿ではセマンティック・コネクティビティ駆動の擬似ラベル方式を提案する。
このアプローチは、接続レベルにおいて擬似ラベルを定式化し、構造的および低雑音のセマンティクスの学習を容易にする。
論文 参考訳(メタデータ) (2023-12-11T12:29:51Z) - Exploiting Completeness and Uncertainty of Pseudo Labels for Weakly
Supervised Video Anomaly Detection [149.23913018423022]
弱教師付きビデオ異常検出は、ビデオレベルのラベルのみを用いて、ビデオ内の異常事象を特定することを目的としている。
2段階の自己学習法は擬似ラベルの自己生成によって著しく改善されている。
本稿では,自己学習のための完全性と不確実性を利用した強化フレームワークを提案する。
論文 参考訳(メタデータ) (2022-12-08T05:53:53Z) - Plug-and-Play Pseudo Label Correction Network for Unsupervised Person
Re-identification [36.3733132520186]
グラフベースの擬似ラベル補正ネットワーク(GLC)を提案する。
GLC は k 近傍グラフ上のサンプル間の関係制約を用いて初期雑音ラベルを補正する。
本手法は,様々なクラスタリング手法と互換性があり,最新技術の性能を継続的に向上させる。
論文 参考訳(メタデータ) (2022-06-14T05:59:37Z) - Part-based Pseudo Label Refinement for Unsupervised Person
Re-identification [29.034390810078172]
教師なしの人物再識別(re-ID)は、ラベルなしデータから人物検索のための識別表現を学習することを目的としている。
近年の手法では擬似ラベルを用いることでこの課題が達成されているが,これらのラベルは本質的にノイズが多く,精度が低下している。
本稿では,グローバルな特徴と部分的特徴の相補関係を利用して,ラベルノイズを低減するPseudo Label Refinement (PPLR) フレームワークを提案する。
論文 参考訳(メタデータ) (2022-03-28T12:15:53Z) - Refining Pseudo Labels with Clustering Consensus over Generations for
Unsupervised Object Re-identification [84.72303377833732]
教師なしのオブジェクト再識別は、アノテーションなしでオブジェクト検索のための識別表現を学習することを目的としている。
本稿では,クラスタリングコンセンサスを用いた連続学習世代間の擬似ラベル類似性を推定し,時間的に伝播およびアンサンブルされた擬似ラベルを用いた洗練された擬似ラベルを提案する。
提案する擬似ラベル精錬戦略は単純だが有効であり、既存のクラスタリングに基づく教師なし再同定手法にシームレスに統合することができる。
論文 参考訳(メタデータ) (2021-06-11T02:42:42Z) - Dual-Refinement: Joint Label and Feature Refinement for Unsupervised
Domain Adaptive Person Re-Identification [51.98150752331922]
Unsupervised Domain Adaptive (UDA) Person Re-identification (再ID) は、ターゲットドメインデータのラベルが欠落しているため、難しい作業です。
オフラインクラスタリングフェーズにおける擬似ラベルとオンライントレーニングフェーズにおける特徴を共同で改良する,デュアルリファインメントと呼ばれる新しいアプローチを提案する。
本手法は最先端手法を大きなマージンで上回っている。
論文 参考訳(メタデータ) (2020-12-26T07:35:35Z) - PseudoSeg: Designing Pseudo Labels for Semantic Segmentation [78.35515004654553]
ラベルなしまたは弱いラベル付きデータを用いたトレーニングのための構造化された擬似ラベルを生成するための擬似ラベルの再設計を提案する。
提案手法の有効性を,低データと高データの両方において示す。
論文 参考訳(メタデータ) (2020-10-19T17:59:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。