論文の概要: Iso-Diffusion: Improving Diffusion Probabilistic Models Using the Isotropy of the Additive Gaussian Noise
- arxiv url: http://arxiv.org/abs/2403.16790v2
- Date: Wed, 27 Nov 2024 20:40:08 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-02 15:15:51.362752
- Title: Iso-Diffusion: Improving Diffusion Probabilistic Models Using the Isotropy of the Additive Gaussian Noise
- Title(参考訳): イソ拡散:付加ガウス雑音の等方性を用いた拡散確率モデルの改善
- Authors: Dilum Fernando, Shakthi Perera, H. M. P. S. Madushan, H. L. P. Malshan, Roshan Godaliyadda, M. P. B. Ekanayake, H. M. V. R. Herath, Dhananjaya Jayasundara, Chaminda Bandara,
- Abstract要約: 本稿では、DDPMの忠実度を高めるために、目的関数の制約として添加音の等方性を利用する方法を示す。
我々のアプローチは単純であり、DDPMの変種にも適用できる。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Denoising Diffusion Probabilistic Models (DDPMs) have accomplished much in the realm of generative AI. With the tremendous level of popularity the Generative AI algorithms have achieved, the demand for higher levels of performance continues to increase. Under this backdrop, careful scrutinization of algorithm performance under sample fidelity type measures is essential to ascertain how, effectively, the underlying structures of the data distribution were learned. In this context, minimizing the mean squared error between the additive and predicted noise alone does not impose structural integrity constraints on the predicted noise, for instance, isotropic. Under this premise, we were motivated to utilize the isotropy of the additive noise as a constraint on the objective function to enhance the fidelity of DDPMs. Our approach is simple and can be applied to any DDPM variant. We validate our approach by presenting experiments conducted on four synthetic 2D datasets as well as on unconditional image generation. As demonstrated by the results, the incorporation of this constraint improves the fidelity metrics, Precision and Density, and the results clearly indicate how the structural imposition was effective.
- Abstract(参考訳): Denoising Diffusion Probabilistic Models (DDPM)は、生成AIの領域で多くの成果を上げている。
生成AIアルゴリズムが達成した膨大な人気により、より高いレベルのパフォーマンスに対する需要は増加し続けています。
この背景には,データ分布の基盤構造がいかに効果的に学習されたかを確認するために,サンプル忠実度型尺度によるアルゴリズム性能の慎重な精査が不可欠である。
この文脈では、添加物と予測ノイズの間の平均2乗誤差を最小化することは、例えば等方性のような予測ノイズに構造的整合性制約を課すものではない。
この前提のもと, DDPMの忠実度を高める目的関数の制約として, 付加音の等方性を利用した。
我々のアプローチは単純であり、DDPMの変種にも適用できる。
我々は,4つの合成2次元データセットおよび無条件画像生成実験を提示し,本手法の有効性を検証した。
その結果, 本制約の組み入れにより, 忠実度, 精度, 密度が向上し, 構造配置がいかに有効であったかが明らかとなった。
関連論文リスト
- Dimension-free Score Matching and Time Bootstrapping for Diffusion Models [11.743167854433306]
拡散モデルは、様々な雑音レベルにおける対象分布のスコア関数を推定してサンプルを生成する。
本研究では,これらのスコア関数を学習するために,次元自由なサンプル境界の複雑性を初めて(ほぼ)確立する。
我々の分析の重要な側面は、ノイズレベル間でのスコアを共同で推定する単一関数近似器を使用することである。
論文 参考訳(メタデータ) (2025-02-14T18:32:22Z) - DiffATR: Diffusion-based Generative Modeling for Audio-Text Retrieval [49.076590578101985]
ノイズから関節分布を生成する拡散型ATRフレームワーク(DiffATR)を提案する。
優れたパフォーマンスを持つAudioCapsとClothoデータセットの実験は、我々のアプローチの有効性を検証する。
論文 参考訳(メタデータ) (2024-09-16T06:33:26Z) - Robust Estimation of Causal Heteroscedastic Noise Models [7.568978862189266]
学生の$t$-distributionは、より小さなサンプルサイズと極端な値で、全体の分布形態を著しく変えることなく、サンプル変数をサンプリングすることの堅牢さで知られている。
我々の経験的評価は、我々の推定器はより堅牢で、合成ベンチマークと実ベンチマークの総合的な性能が向上していることを示している。
論文 参考訳(メタデータ) (2023-12-15T02:26:35Z) - Semi-Implicit Denoising Diffusion Models (SIDDMs) [50.30163684539586]
Denoising Diffusion Probabilistic Models (DDPM)のような既存のモデルは、高品質で多様なサンプルを提供するが、本質的に多くの反復的なステップによって遅くなる。
暗黙的要因と明示的要因を一致させることにより、この問題に対処する新しいアプローチを導入する。
提案手法は拡散モデルに匹敵する生成性能と,少数のサンプリングステップを持つモデルに比較して非常に優れた結果が得られることを示す。
論文 参考訳(メタデータ) (2023-06-21T18:49:22Z) - Conditional Denoising Diffusion for Sequential Recommendation [62.127862728308045]
GAN(Generative Adversarial Networks)とVAE(VAE)の2つの顕著な生成モデル
GANは不安定な最適化に苦しむ一方、VAEは後続の崩壊と過度に平らな世代である。
本稿では,シーケンスエンコーダ,クロスアテンティブデノナイジングデコーダ,ステップワイズディフューザを含む条件付きデノナイジング拡散モデルを提案する。
論文 参考訳(メタデータ) (2023-04-22T15:32:59Z) - Optimizing the Noise in Self-Supervised Learning: from Importance
Sampling to Noise-Contrastive Estimation [80.07065346699005]
GAN(Generative Adversarial Networks)のように、最適な雑音分布はデータ分布に等しくなると広く想定されている。
我々は、この自己教師型タスクをエネルギーベースモデルの推定問題として基礎づけるノイズ・コントラスト推定に目を向ける。
本研究は, 最適雑音のサンプリングは困難であり, 効率性の向上は, データに匹敵する雑音分布を選択することに比べ, 緩やかに行うことができると結論付けた。
論文 参考訳(メタデータ) (2023-01-23T19:57:58Z) - Denoising Deep Generative Models [23.19427801594478]
様相に基づく深層生成モデルは、多様体仮説の下での病理学的挙動を示すことが示されている。
この問題に対処するための2つの手法を提案する。
論文 参考訳(メタデータ) (2022-11-30T19:00:00Z) - Denoising diffusion models for out-of-distribution detection [2.113925122479677]
我々は,確率拡散モデル(DDPM)を自己エンコーダの復号化として活用する。
DDPMを用いてノイズレベルの範囲の入力を再構成し,結果の多次元再構成誤差を用いてアウト・オブ・ディストリビューション入力を分類する。
論文 参考訳(メタデータ) (2022-11-14T20:35:11Z) - FP-Diffusion: Improving Score-based Diffusion Models by Enforcing the
Underlying Score Fokker-Planck Equation [72.19198763459448]
雑音が増大する傾向にあるデータ密度に対応する雑音条件スコア関数の族を学習する。
これらの摂動データ密度は、密度の時空間進化を管理する偏微分方程式(PDE)であるフォッカー・プランク方程式(Fokker-Planck equation, FPE)によって結合される。
我々は、摂動データ密度の雑音条件スコアを特徴付けるスコアFPEと呼ばれる対応する方程式を導出する。
論文 参考訳(メタデータ) (2022-10-09T16:27:25Z) - Accelerating Diffusion Models via Early Stop of the Diffusion Process [114.48426684994179]
Denoising Diffusion Probabilistic Models (DDPM) は、様々な世代タスクにおいて優れたパフォーマンスを実現している。
実際には、DDPMは高品質なサンプルを得るために何十万ものデノナイジングステップを必要とすることが多い。
本稿では,DDPMの早期停止型DDPM(Early-Stopped DDPM, ES-DDPM)の原理的高速化戦略を提案する。
論文 参考訳(メタデータ) (2022-05-25T06:40:09Z) - Adaptive Noisy Data Augmentation for Regularized Estimation and
Inference in Generalized Linear Models [15.817569026827451]
一般化線形モデル(GLM)の推定と推定を規則化するAdaPtive Noise Augmentation (PANDA) 手法を提案する。
シミュレーションおよび実生活データにおいて,同一タイプの正則化器の既存手法に対して,PANDAが優れているか類似した性能を示す。
論文 参考訳(メタデータ) (2022-04-18T22:02:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。