論文の概要: Proprioception Is All You Need: Terrain Classification for Boreal Forests
- arxiv url: http://arxiv.org/abs/2403.16877v2
- Date: Fri, 27 Sep 2024 17:14:26 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-09 03:48:22.210569
- Title: Proprioception Is All You Need: Terrain Classification for Boreal Forests
- Title(参考訳): 自然界の森を分類する「Proprioception」(動画あり)
- Authors: Damien LaRocque, William Guimont-Martin, David-Alexandre Duclos, Philippe Giguère, François Pomerleau,
- Abstract要約: BorealTCはプロプリセプティブ・ベースの地形分類(TC)のための公開データセットである
Husky A200で記録されたデータセットには、慣性測定ユニット(IMU)の116分間、モータ電流、車輪の計測データが含まれています。
2つのTCデータセットの組み合わせは、地形の特性で解釈できる潜在空間が得られることを示す。
- 参考スコア(独自算出の注目度): 4.703814941476968
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Recent works in field robotics highlighted the importance of resiliency against different types of terrains. Boreal forests, in particular, are home to many mobility-impeding terrains that should be considered for off-road autonomous navigation. Also, being one of the largest land biomes on Earth, boreal forests are an area where autonomous vehicles are expected to become increasingly common. In this paper, we address this issue by introducing BorealTC, a publicly available dataset for proprioceptive-based terrain classification (TC). Recorded with a Husky A200, our dataset contains 116 min of Inertial Measurement Unit (IMU), motor current, and wheel odometry data, focusing on typical boreal forest terrains, notably snow, ice, and silty loam. Combining our dataset with another dataset from the state-of-the-art, we evaluate both a Convolutional Neural Network (CNN) and the novel state space model (SSM)-based Mamba architecture on a TC task. Interestingly, we show that while CNN outperforms Mamba on each separate dataset, Mamba achieves greater accuracy when trained on a combination of both. In addition, we demonstrate that Mamba's learning capacity is greater than a CNN for increasing amounts of data. We show that the combination of two TC datasets yields a latent space that can be interpreted with the properties of the terrains. We also discuss the implications of merging datasets on classification. Our source code and dataset are publicly available online: https://github.com/norlab-ulaval/BorealTC.
- Abstract(参考訳): フィールドロボティクスにおける最近の研究は、異なるタイプの地形に対するレジリエンスの重要性を強調した。
特にボレアル森林は、オフロードの自律航法のために考慮すべきモビリティを取り入れた多くの地形がある。
また、地球上で最大の陸生生物の1つであるボレアル森林は、自動運転車がますます一般的になると予想される地域である。
本稿では,プロテアーゼに基づく地形分類(TC)のための公開データセットであるBorealTCを導入することにより,この問題に対処する。
Husky A200で記録されたデータセットには、慣性測定ユニット(IMU)の116分間、モータ電流、車輪の計測データが含まれており、特に雪、氷、シルトロームといった典型的なボレアル森林の地形に焦点を当てている。
我々のデータセットと最先端技術からの別のデータセットを組み合わせることで、畳み込みニューラルネットワーク(CNN)と新しい状態空間モデル(SSM)ベースのMambaアーキテクチャの両方をTCタスク上で評価する。
興味深いことに、CNNは個々のデータセットでMambaよりも優れていますが、両方の組み合わせでトレーニングすると、Mambaはより精度が高くなります。
さらに,Mambaの学習能力は,データ量を増やすためのCNNよりも優れていることを示す。
2つのTCデータセットの組み合わせは、地形の特性で解釈できる潜在空間が得られることを示す。
また、分類における統合データセットの影響についても論じる。
ソースコードとデータセットは、https://github.com/norlab-ulaval/BorealTC.com/で公開されています。
関連論文リスト
- OAM-TCD: A globally diverse dataset of high-resolution tree cover maps [8.336960607169175]
OpenMap (OAM) から得られた高解像度の空中画像において, ツリークラウンデライン化(TCD)のための新しいオープンアクセスデータセットを提案する。
我々のデータセットであるOAM-TCDは、50722048x2048px画像を10cm/px解像度で、関連する280k個以上の木と56k個の木からなる。
データセットを使用して、既存の最先端モデルと比較する参照インスタンスとセマンティックセグメンテーションモデルをトレーニングする。
論文 参考訳(メタデータ) (2024-07-16T14:11:29Z) - UniTraj: A Unified Framework for Scalable Vehicle Trajectory Prediction [93.77809355002591]
さまざまなデータセット、モデル、評価基準を統一する包括的なフレームワークであるUniTrajを紹介する。
我々は広範な実験を行い、他のデータセットに転送するとモデルの性能が大幅に低下することがわかった。
これらの知見を説明するために,データセットの特徴に関する洞察を提供する。
論文 参考訳(メタデータ) (2024-03-22T10:36:50Z) - Training point-based deep learning networks for forest segmentation with synthetic data [0.0]
我々は,人工林のシーンを手続き的に生成する現実的なシミュレータを開発した。
森林分断のための最先端の深層学習ネットワークの比較研究を行った。
論文 参考訳(メタデータ) (2024-03-21T04:01:26Z) - Kick Back & Relax++: Scaling Beyond Ground-Truth Depth with SlowTV &
CribsTV [50.616892315086574]
本稿では,SlowTV と CribsTV の2つの新しいデータセットを提案する。
これらは、一般公開されているYouTubeビデオから収集された大規模なデータセットで、合計200万のトレーニングフレームが含まれている。
我々はこれらのデータセットを活用し、ゼロショット一般化の難しい課題に取り組む。
論文 参考訳(メタデータ) (2024-03-03T17:29:03Z) - SegmentAnyTree: A sensor and platform agnostic deep learning model for
tree segmentation using laser scanning data [15.438892555484616]
本研究は,様々なレーザー走査型に適用可能な深層学習モデルを用いて,ライダーデータにおけるツリークラウン(ITC)セグメンテーションを推し進める。
3次元森林景観解析におけるデータ特性の相違による伝達可能性の課題に対処する。
PointGroupアーキテクチャに基づくこのモデルは、セマンティックとインスタンスセグメンテーションのための別々のヘッドを持つ3D CNNである。
論文 参考訳(メタデータ) (2024-01-28T19:47:17Z) - Argoverse 2: Next Generation Datasets for Self-Driving Perception and
Forecasting [64.7364925689825]
Argoverse 2(AV2)は、自動運転分野の研究の知覚と予測のための3つのデータセットの集合である。
Lidarデータセットには、ラベルなしのLidar点雲とマップ整列ポーズの2万のシーケンスが含まれている。
Motion Forecastingデータセットには、各ローカルシーンにおける自動運転車と他のアクター間の興味深い、挑戦的なインタラクションのために採掘された25万のシナリオが含まれている。
論文 参考訳(メタデータ) (2023-01-02T00:36:22Z) - Tree Detection and Diameter Estimation Based on Deep Learning [0.0]
樹木認識は、自律的な林業活動に向けた重要なビルディングブロックである。
データセットでトレーニングされたディープニューラルネットワークモデルは、木検出の精度90.4%を達成する。
結果は、自律的な倒木作戦への有望な道を提供する。
論文 参考訳(メタデータ) (2022-10-31T15:51:32Z) - Bamboo: Building Mega-Scale Vision Dataset Continually with
Human-Machine Synergy [69.07918114341298]
大規模データセットはコンピュータビジョンにおいて重要な役割を果たす。
既存のデータセットはラベルシステムに従って収集されるか、サンプルを区別せずに盲目的に収集される。
我々は,包括的ラベルシステム上で,積極的に注釈付きかつ継続的な高品質な視覚データセットの構築を提唱する。
論文 参考訳(メタデータ) (2022-03-15T13:01:00Z) - MSeg: A Composite Dataset for Multi-domain Semantic Segmentation [100.17755160696939]
セマンティックセグメンテーションデータセットを異なるドメインから統合する合成データセットであるMSegを提案する。
一般化と画素レベルのアノテーションのアライメントを調整し,2万枚以上のオブジェクトマスクを8万枚以上の画像で再現する。
MSegでトレーニングされたモデルは、WildDash-v1のリーダーボードで、トレーニング中にWildDashのデータに触れることなく、堅牢なセマンティックセグメンテーションのためにランク付けされている。
論文 参考訳(メタデータ) (2021-12-27T16:16:35Z) - Towards Optimal Strategies for Training Self-Driving Perception Models
in Simulation [98.51313127382937]
合成ドメインのみにおけるラベルの使用に焦点を当てる。
提案手法では,ニューラル不変表現の学習方法と,シミュレータからデータをサンプリングする方法に関する理論的にインスピレーションを得た視点を導入する。
マルチセンサーデータを用いた鳥眼視車両分割作業におけるアプローチについて紹介する。
論文 参考訳(メタデータ) (2021-11-15T18:37:43Z) - Very High Resolution Land Cover Mapping of Urban Areas at Global Scale
with Convolutional Neural Networks [0.0]
本稿では,高解像度画像と限られたノイズラベル付きデータから,都市域の7クラス土地被覆マップを作成する手法について述べる。
データベースの集約、セミオートマチックな分類、手動のアノテーションといったいくつかの分野に関するトレーニングデータセットを作成して、各クラスで完全な基礎的真実を得ました。
最終生成物は、ベクトル化の前に縫合され、二項化され、精製されたモデル予測から計算された非常に貴重な土地被覆写像である。
論文 参考訳(メタデータ) (2020-05-12T10:03:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。