Make-It-Vivid: Dressing Your Animatable Biped Cartoon Characters from Text
- URL: http://arxiv.org/abs/2403.16897v1
- Date: Mon, 25 Mar 2024 16:08:04 GMT
- Title: Make-It-Vivid: Dressing Your Animatable Biped Cartoon Characters from Text
- Authors: Junshu Tang, Yanhong Zeng, Ke Fan, Xuheng Wang, Bo Dai, Kai Chen, Lizhuang Ma,
- Abstract summary: We focus on automatic texture design for cartoon characters on input instructions.
This is challenging for domain-specific requirements and a lack of high-quality data.
We propose Make-ItVivi the first attempt to enable high-quality texture generation from text in UV.
- Score: 38.591390310534024
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Creating and animating 3D biped cartoon characters is crucial and valuable in various applications. Compared with geometry, the diverse texture design plays an important role in making 3D biped cartoon characters vivid and charming. Therefore, we focus on automatic texture design for cartoon characters based on input instructions. This is challenging for domain-specific requirements and a lack of high-quality data. To address this challenge, we propose Make-It-Vivid, the first attempt to enable high-quality texture generation from text in UV space. We prepare a detailed text-texture paired data for 3D characters by using vision-question-answering agents. Then we customize a pretrained text-to-image model to generate texture map with template structure while preserving the natural 2D image knowledge. Furthermore, to enhance fine-grained details, we propose a novel adversarial learning scheme to shorten the domain gap between original dataset and realistic texture domain. Extensive experiments show that our approach outperforms current texture generation methods, resulting in efficient character texturing and faithful generation with prompts. Besides, we showcase various applications such as out of domain generation and texture stylization. We also provide an efficient generation system for automatic text-guided textured character generation and animation.
Related papers
- WordRobe: Text-Guided Generation of Textured 3D Garments [30.614451083408266]
"WordRobe" is a novel framework for the generation of unposed & textured 3D garment meshes from user-friendly text prompts.
We demonstrate superior performance over current SOTAs for learning 3D garment latent space, garment synthesis, and text-driven texture synthesis.
arXiv Detail & Related papers (2024-03-26T09:44:34Z) - DressCode: Autoregressively Sewing and Generating Garments from Text Guidance [61.48120090970027]
DressCode aims to democratize design for novices and offer immense potential in fashion design, virtual try-on, and digital human creation.
We first introduce SewingGPT, a GPT-based architecture integrating cross-attention with text-conditioned embedding to generate sewing patterns.
We then tailor a pre-trained Stable Diffusion to generate tile-based Physically-based Rendering (PBR) textures for the garments.
arXiv Detail & Related papers (2024-01-29T16:24:21Z) - TextureDreamer: Image-guided Texture Synthesis through Geometry-aware
Diffusion [64.49276500129092]
TextureDreamer is an image-guided texture synthesis method.
It can transfer relightable textures from a small number of input images to target 3D shapes across arbitrary categories.
arXiv Detail & Related papers (2024-01-17T18:55:49Z) - DreamSpace: Dreaming Your Room Space with Text-Driven Panoramic Texture
Propagation [31.353409149640605]
In this paper, we propose a novel framework to generate 3D textures for immersive VR experiences.
To survive, we separate texture cues in confidential regions and learn to network textures in real-world environments.
arXiv Detail & Related papers (2023-10-19T19:29:23Z) - Text2Scene: Text-driven Indoor Scene Stylization with Part-aware Details [12.660352353074012]
We propose Text2Scene, a method to automatically create realistic textures for virtual scenes composed of multiple objects.
Our pipeline adds detailed texture on labeled 3D geometries in the room such that the generated colors respect the hierarchical structure or semantic parts that are often composed of similar materials.
arXiv Detail & Related papers (2023-08-31T17:37:23Z) - TADA! Text to Animatable Digital Avatars [57.52707683788961]
TADA takes textual descriptions and produces expressive 3D avatars with high-quality geometry and lifelike textures.
We derive an optimizable high-resolution body model from SMPL-X with 3D displacements and a texture map.
We render normals and RGB images of the generated character and exploit their latent embeddings in the SDS training process.
arXiv Detail & Related papers (2023-08-21T17:59:10Z) - TAPS3D: Text-Guided 3D Textured Shape Generation from Pseudo Supervision [114.56048848216254]
We present a novel framework, TAPS3D, to train a text-guided 3D shape generator with pseudo captions.
Based on rendered 2D images, we retrieve relevant words from the CLIP vocabulary and construct pseudo captions using templates.
Our constructed captions provide high-level semantic supervision for generated 3D shapes.
arXiv Detail & Related papers (2023-03-23T13:53:16Z) - TEXTure: Text-Guided Texturing of 3D Shapes [71.13116133846084]
We present TEXTure, a novel method for text-guided editing, editing, and transfer of textures for 3D shapes.
We define a trimap partitioning process that generates seamless 3D textures without requiring explicit surface textures.
arXiv Detail & Related papers (2023-02-03T13:18:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.