Multi-Agent Optimization for Safety Analysis of Cyber-Physical Systems: Position Paper
- URL: http://arxiv.org/abs/2403.16904v1
- Date: Mon, 25 Mar 2024 16:14:45 GMT
- Title: Multi-Agent Optimization for Safety Analysis of Cyber-Physical Systems: Position Paper
- Authors: Önder Gürcan, Nataliya Yakymets, Sara Tucci-Piergiovanni, Ansgar Radermacher,
- Abstract summary: Failure Mode, Effects and Criticality Analysis (FMECA) is one of the safety analysis methods recommended by most of the international standards.
We describe a multi-agent based optimization method which extends classical FMECA for offering optimal solutions.
- Score: 0.8562182926816566
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Failure Mode, Effects and Criticality Analysis (FMECA) is one of the safety analysis methods recommended by most of the international standards. The classical FMECA is made in a form of a table filled in either manually or by using safety analysis tools. In both cases, the design engineers have to choose the trade-offs between safety and other development constraints. In the case of complex cyber-physical systems (CPS) with thousands of specified constraints, this may lead to severe problems and significantly impact the overall criticality of CPS. In this paper, we propose to adopt optimization techniques to automate the decision making process conducted after FMECA of CPS. We describe a multi-agent based optimization method which extends classical FMECA for offering optimal solutions in terms of criticality and development constraints of CPS.
Related papers
- SCPO: Safe Reinforcement Learning with Safety Critic Policy Optimization [1.3597551064547502]
This study introduces a novel safe reinforcement learning algorithm, Safety Critic Policy Optimization.
In this study, we define the safety critic, a mechanism that nullifies rewards obtained through violating safety constraints.
Our theoretical analysis indicates that the proposed algorithm can automatically balance the trade-off between adhering to safety constraints and maximizing rewards.
arXiv Detail & Related papers (2023-11-01T22:12:50Z) - Leveraging Traceability to Integrate Safety Analysis Artifacts into the
Software Development Process [51.42800587382228]
Safety assurance cases (SACs) can be challenging to maintain during system evolution.
We propose a solution that leverages software traceability to connect relevant system artifacts to safety analysis models.
We elicit design rationales for system changes to help safety stakeholders analyze the impact of system changes on safety.
arXiv Detail & Related papers (2023-07-14T16:03:27Z) - Bayesian Optimization with Formal Safety Guarantees via Online Conformal Prediction [36.14499894307206]
Black-box zero-th order optimization is a central primitive for applications in fields as diverse as finance, physics, and engineering.
In this paper, we study scenarios in which feedback is also provided on the safety of the attempted solution.
A novel BO-based approach is introduced that satisfies safety requirements irrespective of properties of the constraint function.
arXiv Detail & Related papers (2023-06-30T17:26:49Z) - Meta-Learning Priors for Safe Bayesian Optimization [72.8349503901712]
We build on a meta-learning algorithm, F-PACOH, capable of providing reliable uncertainty quantification in settings of data scarcity.
As core contribution, we develop a novel framework for choosing safety-compliant priors in a data-riven manner.
On benchmark functions and a high-precision motion system, we demonstrate that our meta-learned priors accelerate the convergence of safe BO approaches.
arXiv Detail & Related papers (2022-10-03T08:38:38Z) - Deep VULMAN: A Deep Reinforcement Learning-Enabled Cyber Vulnerability
Management Framework [4.685954926214926]
Cyber vulnerability management is a critical function of a cybersecurity operations center (CSOC) that helps protect organizations against cyber-attacks on their computer and network systems.
The current approaches are deterministic and one-time decision-making methods, which do not consider future uncertainties when prioritizing and selecting vulnerabilities for mitigation.
We propose a novel framework, Deep VULMAN, consisting of a deep reinforcement learning agent and an integer programming method to fill this gap in the cyber vulnerability management process.
arXiv Detail & Related papers (2022-08-03T22:32:48Z) - Constrained Policy Optimization via Bayesian World Models [79.0077602277004]
LAMBDA is a model-based approach for policy optimization in safety critical tasks modeled via constrained Markov decision processes.
We demonstrate LAMBDA's state of the art performance on the Safety-Gym benchmark suite in terms of sample efficiency and constraint violation.
arXiv Detail & Related papers (2022-01-24T17:02:22Z) - Efficient Model-Based Multi-Agent Mean-Field Reinforcement Learning [89.31889875864599]
We propose an efficient model-based reinforcement learning algorithm for learning in multi-agent systems.
Our main theoretical contributions are the first general regret bounds for model-based reinforcement learning for MFC.
We provide a practical parametrization of the core optimization problem.
arXiv Detail & Related papers (2021-07-08T18:01:02Z) - Constraints Satisfiability Driven Reinforcement Learning for Autonomous
Cyber Defense [7.321728608775741]
We present a new hybrid autonomous agent architecture that aims to optimize and verify defense policies of reinforcement learning (RL)
We use constraints verification (using satisfiability modulo theory (SMT)) to steer the RL decision-making toward safe and effective actions.
Our evaluation of the presented approach in a simulated CPS environment shows that the agent learns the optimal policy fast and defeats diversified attack strategies in 99% cases.
arXiv Detail & Related papers (2021-04-19T01:08:30Z) - Covert Model Poisoning Against Federated Learning: Algorithm Design and
Optimization [76.51980153902774]
Federated learning (FL) is vulnerable to external attacks on FL models during parameters transmissions.
In this paper, we propose effective MP algorithms to combat state-of-the-art defensive aggregation mechanisms.
Our experimental results demonstrate that the proposed CMP algorithms are effective and substantially outperform existing attack mechanisms.
arXiv Detail & Related papers (2021-01-28T03:28:18Z) - Multi-Level Evolution Strategies for High-Resolution Black-Box Control [0.2320417845168326]
This paper introduces a multi-level (m-lev) mechanism into Evolution Strategies (ESs)
It addresses a class of global optimization problems that could benefit from fine discretization of their decision variables.
arXiv Detail & Related papers (2020-10-04T09:24:40Z) - Combining Deep Learning and Optimization for Security-Constrained
Optimal Power Flow [94.24763814458686]
Security-constrained optimal power flow (SCOPF) is fundamental in power systems.
Modeling of APR within the SCOPF problem results in complex large-scale mixed-integer programs.
This paper proposes a novel approach that combines deep learning and robust optimization techniques.
arXiv Detail & Related papers (2020-07-14T12:38:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.