Bayesian Optimization with Formal Safety Guarantees via Online Conformal Prediction
- URL: http://arxiv.org/abs/2306.17815v3
- Date: Thu, 4 Jul 2024 10:23:05 GMT
- Title: Bayesian Optimization with Formal Safety Guarantees via Online Conformal Prediction
- Authors: Yunchuan Zhang, Sangwoo Park, Osvaldo Simeone,
- Abstract summary: Black-box zero-th order optimization is a central primitive for applications in fields as diverse as finance, physics, and engineering.
In this paper, we study scenarios in which feedback is also provided on the safety of the attempted solution.
A novel BO-based approach is introduced that satisfies safety requirements irrespective of properties of the constraint function.
- Score: 36.14499894307206
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Black-box zero-th order optimization is a central primitive for applications in fields as diverse as finance, physics, and engineering. In a common formulation of this problem, a designer sequentially attempts candidate solutions, receiving noisy feedback on the value of each attempt from the system. In this paper, we study scenarios in which feedback is also provided on the safety of the attempted solution, and the optimizer is constrained to limit the number of unsafe solutions that are tried throughout the optimization process. Focusing on methods based on Bayesian optimization (BO), prior art has introduced an optimization scheme -- referred to as SAFEOPT -- that is guaranteed not to select any unsafe solution with a controllable probability over feedback noise as long as strict assumptions on the safety constraint function are met. In this paper, a novel BO-based approach is introduced that satisfies safety requirements irrespective of properties of the constraint function. This strong theoretical guarantee is obtained at the cost of allowing for an arbitrary, controllable but non-zero, rate of violation of the safety constraint. The proposed method, referred to as SAFE-BOCP, builds on online conformal prediction (CP) and is specialized to the cases in which feedback on the safety constraint is either noiseless or noisy. Experimental results on synthetic and real-world data validate the advantages and flexibility of the proposed SAFE-BOCP.
Related papers
- CMA-ES for Safe Optimization [9.130749109828717]
This study focuses on CMA-ES as an efficient evolutionary algorithm and proposes an optimization method termed safe CMA-ES.
The safe CMA-ES is designed to achieve both safety and efficiency in safe optimization.
arXiv Detail & Related papers (2024-05-17T04:24:56Z) - Information-Theoretic Safe Bayesian Optimization [59.758009422067005]
We consider a sequential decision making task, where the goal is to optimize an unknown function without evaluating parameters that violate an unknown (safety) constraint.
Most current methods rely on a discretization of the domain and cannot be directly extended to the continuous case.
We propose an information-theoretic safe exploration criterion that directly exploits the GP posterior to identify the most informative safe parameters to evaluate.
arXiv Detail & Related papers (2024-02-23T14:31:10Z) - SCPO: Safe Reinforcement Learning with Safety Critic Policy Optimization [1.3597551064547502]
This study introduces a novel safe reinforcement learning algorithm, Safety Critic Policy Optimization.
In this study, we define the safety critic, a mechanism that nullifies rewards obtained through violating safety constraints.
Our theoretical analysis indicates that the proposed algorithm can automatically balance the trade-off between adhering to safety constraints and maximizing rewards.
arXiv Detail & Related papers (2023-11-01T22:12:50Z) - Iterative Reachability Estimation for Safe Reinforcement Learning [23.942701020636882]
We propose a new framework, Reachability Estimation for Safe Policy Optimization (RESPO), for safety-constrained reinforcement learning (RL) environments.
In the feasible set where there exist violation-free policies, we optimize for rewards while maintaining persistent safety.
We evaluate the proposed methods on a diverse suite of safe RL environments from Safety Gym, PyBullet, and MuJoCo.
arXiv Detail & Related papers (2023-09-24T02:36:42Z) - Meta-Learning Priors for Safe Bayesian Optimization [72.8349503901712]
We build on a meta-learning algorithm, F-PACOH, capable of providing reliable uncertainty quantification in settings of data scarcity.
As core contribution, we develop a novel framework for choosing safety-compliant priors in a data-riven manner.
On benchmark functions and a high-precision motion system, we demonstrate that our meta-learned priors accelerate the convergence of safe BO approaches.
arXiv Detail & Related papers (2022-10-03T08:38:38Z) - Recursively Feasible Probabilistic Safe Online Learning with Control Barrier Functions [60.26921219698514]
We introduce a model-uncertainty-aware reformulation of CBF-based safety-critical controllers.
We then present the pointwise feasibility conditions of the resulting safety controller.
We use these conditions to devise an event-triggered online data collection strategy.
arXiv Detail & Related papers (2022-08-23T05:02:09Z) - Log Barriers for Safe Black-box Optimization with Application to Safe
Reinforcement Learning [72.97229770329214]
We introduce a general approach for seeking high dimensional non-linear optimization problems in which maintaining safety during learning is crucial.
Our approach called LBSGD is based on applying a logarithmic barrier approximation with a carefully chosen step size.
We demonstrate the effectiveness of our approach on minimizing violation in policy tasks in safe reinforcement learning.
arXiv Detail & Related papers (2022-07-21T11:14:47Z) - Gaussian Control Barrier Functions : A Non-Parametric Paradigm to Safety [7.921648699199647]
We propose a non-parametric approach for online synthesis of CBFs using Gaussian Processes (GPs)
GPs have favorable properties, in addition to being non-parametric, such as analytical tractability and robust uncertainty estimation.
We validate our approach experimentally on a quad by demonstrating safe control for fixed but arbitrary safe sets.
arXiv Detail & Related papers (2022-03-29T12:21:28Z) - Pointwise Feasibility of Gaussian Process-based Safety-Critical Control
under Model Uncertainty [77.18483084440182]
Control Barrier Functions (CBFs) and Control Lyapunov Functions (CLFs) are popular tools for enforcing safety and stability of a controlled system, respectively.
We present a Gaussian Process (GP)-based approach to tackle the problem of model uncertainty in safety-critical controllers that use CBFs and CLFs.
arXiv Detail & Related papers (2021-06-13T23:08:49Z) - Chance Constrained Policy Optimization for Process Control and
Optimization [1.4908563154226955]
Chemical process optimization and control are affected by 1) plant-model mismatch, 2) process disturbances, and 3) constraints for safe operation.
We propose a chance constrained policy optimization algorithm which guarantees the satisfaction of joint chance constraints with a high probability.
arXiv Detail & Related papers (2020-07-30T14:20:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.