論文の概要: Backpropagation through space, time, and the brain
- arxiv url: http://arxiv.org/abs/2403.16933v1
- Date: Mon, 25 Mar 2024 16:57:02 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-27 20:24:48.041354
- Title: Backpropagation through space, time, and the brain
- Title(参考訳): 空間・時間・脳におけるバックプロパゲーション
- Authors: Benjamin Ellenberger, Paul Haider, Jakob Jordan, Kevin Max, Ismael Jaras, Laura Kriener, Federico Benitez, Mihai A. Petrovici,
- Abstract要約: 機械学習において、この解答は、空間(BP)と時間(BPTT)の両方を通して、ほぼ普遍的に誤差のバックプロパゲーション随伴によって与えられる。
我々は、ニューロンの物理的、動的ネットワークにおける完全局所的時間的クレジット割り当てのための計算フレームワークであるGeneral Latent Equilibrium (GLE)を紹介する。
- 参考スコア(独自算出の注目度): 2.10686639478348
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Effective learning in neuronal networks requires the adaptation of individual synapses given their relative contribution to solving a task. However, physical neuronal systems -- whether biological or artificial -- are constrained by spatio-temporal locality. How such networks can perform efficient credit assignment, remains, to a large extent, an open question. In Machine Learning, the answer is almost universally given by the error backpropagation algorithm, through both space (BP) and time (BPTT). However, BP(TT) is well-known to rely on biologically implausible assumptions, in particular with respect to spatiotemporal (non-)locality, while forward-propagation models such as real-time recurrent learning (RTRL) suffer from prohibitive memory constraints. We introduce Generalized Latent Equilibrium (GLE), a computational framework for fully local spatio-temporal credit assignment in physical, dynamical networks of neurons. We start by defining an energy based on neuron-local mismatches, from which we derive both neuronal dynamics via stationarity and parameter dynamics via gradient descent. The resulting dynamics can be interpreted as a real-time, biologically plausible approximation of BPTT in deep cortical networks with continuous-time neuronal dynamics and continuously active, local synaptic plasticity. In particular, GLE exploits the ability of biological neurons to phase-shift their output rate with respect to their membrane potential, which is essential in both directions of information propagation. For the forward computation, it enables the mapping of time-continuous inputs to neuronal space, performing an effective spatiotemporal convolution. For the backward computation, it permits the temporal inversion of feedback signals, which consequently approximate the adjoint states necessary for useful parameter updates.
- Abstract(参考訳): 神経ネットワークにおける効果的な学習には、個々のシナプスの適応が必要である。
しかし、生物学的または人工的にも、物理的神経系は時空間的局所性によって制約される。
このようなネットワークがいかに効率のよい信用割当を行うかは、未解決の問題のままである。
機械学習では、その答えは、空間(BP)と時間(BPTT)の両方を通して、ほぼ普遍的にエラーバックプロパゲーションアルゴリズムによって与えられる。
しかし、BP(TT)は、特に時空間的(非)局所性に関して、生物学的に証明不可能な仮定に依存しているのがよく知られており、一方リアルタイム反復学習(RTRL)のような前方伝播モデルは、禁止的なメモリ制約に悩まされている。
本稿では,ニューロンの物理的,動的ネットワークにおける完全局所的時空間クレジット割り当てのための計算フレームワークであるGeneralized Latent Equilibrium (GLE)を紹介する。
まず、ニューロン局所的なミスマッチに基づいてエネルギーを定義し、そこから定常性による神経力学と勾配降下によるパラメータ力学の両方を導出する。
結果のダイナミクスは、連続的な活動的な局所シナプス可塑性を持つ深部皮質神経回路網におけるBPTTのリアルタイム、生物学的に妥当な近似と解釈できる。
特に、GLEは、情報伝達の両方向において必須である膜電位に関して、生物学的ニューロンが出力速度を位相シフトさせる能力を利用する。
フォワード計算では、時間連続入力のニューロン空間へのマッピングを可能にし、効果的な時空間畳み込みを行う。
後ろ向きの計算では、フィードバック信号の時間反転が許容され、結果として有用なパラメータ更新に必要な随伴状態が近似される。
関連論文リスト
- Temporal Spiking Neural Networks with Synaptic Delay for Graph Reasoning [91.29876772547348]
スパイキングニューラルネットワーク(SNN)は、生物学的にインスパイアされたニューラルネットワークモデルとして研究されている。
本稿では,SNNがシナプス遅延と時間符号化とを併用すると,グラフ推論の実行(知識)に長けていることを明らかにする。
論文 参考訳(メタデータ) (2024-05-27T05:53:30Z) - Astrocytes as a mechanism for meta-plasticity and contextually-guided
network function [2.66269503676104]
アストロサイトは、ユビキタスでエニグマティックな非神経細胞である。
アストロサイトは脳機能や神経計算においてより直接的で活発な役割を果たす。
論文 参考訳(メタデータ) (2023-11-06T20:31:01Z) - The Expressive Leaky Memory Neuron: an Efficient and Expressive Phenomenological Neuron Model Can Solve Long-Horizon Tasks [64.08042492426992]
本稿では,脳皮質ニューロンの生物学的モデルであるExpressive Memory(ELM)ニューロンモデルを紹介する。
ELMニューロンは、上記の入力-出力関係を1万以下のトレーニング可能なパラメータと正確に一致させることができる。
本稿では,Long Range Arena(LRA)データセットなど,時間構造を必要とするタスクで評価する。
論文 参考訳(メタデータ) (2023-06-14T13:34:13Z) - Spiking neural network for nonlinear regression [68.8204255655161]
スパイクニューラルネットワークは、メモリとエネルギー消費を大幅に削減する可能性を持っている。
彼らは、次世代のニューロモルフィックハードウェアによって活用できる時間的および神経的疎結合を導入する。
スパイキングニューラルネットワークを用いた回帰フレームワークを提案する。
論文 参考訳(メタデータ) (2022-10-06T13:04:45Z) - POPPINS : A Population-Based Digital Spiking Neuromorphic Processor with
Integer Quadratic Integrate-and-Fire Neurons [50.591267188664666]
2つの階層構造を持つ180nmプロセス技術において,集団に基づくディジタルスパイキングニューロモルフィックプロセッサを提案する。
提案手法は,生体模倣型ニューロモルフィックシステム,低消費電力,低遅延推論処理アプリケーションの開発を可能にする。
論文 参考訳(メタデータ) (2022-01-19T09:26:34Z) - Latent Equilibrium: A unified learning theory for arbitrarily fast
computation with arbitrarily slow neurons [0.7340017786387767]
遅いコンポーネントのネットワークにおける推論と学習のための新しいフレームワークであるLatent Equilibriumを紹介する。
我々は, ニューロンとシナプスのダイナミクスを, 将来的なエネルギー関数から導出する。
本稿では,大脳皮質微小循環の詳細なモデルに我々の原理を適用する方法について述べる。
論文 参考訳(メタデータ) (2021-10-27T16:15:55Z) - Astrocytes mediate analogous memory in a multi-layer neuron-astrocytic
network [52.77024349608834]
情報の一部が数秒間堅牢な活動パターンとして維持され、他の刺激が来なければ完全に消滅することを示す。
この種の短期記憶は、操作情報を数秒保存し、次のパターンとの重複を避けるために完全に忘れてしまう。
任意のパターンをロードし、一定の間隔で保存し、適切な手掛かりパターンを入力に適用した場合に検索する方法について示す。
論文 参考訳(メタデータ) (2021-08-31T16:13:15Z) - Continuous Learning and Adaptation with Membrane Potential and
Activation Threshold Homeostasis [91.3755431537592]
本稿では,MPATH(Membrane Potential and Activation Threshold Homeostasis)ニューロンモデルを提案する。
このモデルにより、ニューロンは入力が提示されたときに自動的に活性を調節することで動的平衡の形式を維持することができる。
実験は、モデルがその入力から適応し、継続的に学習する能力を示す。
論文 参考訳(メタデータ) (2021-04-22T04:01:32Z) - Neuromorphic Algorithm-hardware Codesign for Temporal Pattern Learning [11.781094547718595]
複雑な空間時間パターンを学習するためにSNNを訓練できるLeaky IntegrateとFireニューロンの効率的なトレーニングアルゴリズムを導出する。
我々は,ニューロンとシナプスのメムリスタに基づくネットワークのためのCMOS回路実装を開発した。
論文 参考訳(メタデータ) (2021-04-21T18:23:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。