Hyperspherical Classification with Dynamic Label-to-Prototype Assignment
- URL: http://arxiv.org/abs/2403.16937v1
- Date: Mon, 25 Mar 2024 17:01:34 GMT
- Title: Hyperspherical Classification with Dynamic Label-to-Prototype Assignment
- Authors: Mohammad Saeed Ebrahimi Saadabadi, Ali Dabouei, Sahar Rahimi Malakshan, Nasser M. Nasrabad,
- Abstract summary: We present a simple yet effective method to optimize the category assigned to each prototype during the training.
We solve this optimization using a sequential combination of gradient descent and Bipartide matching.
Our method outperforms its competitors by 1.22% accuracy on CIFAR-100, and 2.15% on ImageNet-200 using a metric space dimension half of the size of its competitors.
- Score: 5.978350039412277
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Aiming to enhance the utilization of metric space by the parametric softmax classifier, recent studies suggest replacing it with a non-parametric alternative. Although a non-parametric classifier may provide better metric space utilization, it introduces the challenge of capturing inter-class relationships. A shared characteristic among prior non-parametric classifiers is the static assignment of labels to prototypes during the training, ie, each prototype consistently represents a class throughout the training course. Orthogonal to previous works, we present a simple yet effective method to optimize the category assigned to each prototype (label-to-prototype assignment) during the training. To this aim, we formalize the problem as a two-step optimization objective over network parameters and label-to-prototype assignment mapping. We solve this optimization using a sequential combination of gradient descent and Bipartide matching. We demonstrate the benefits of the proposed approach by conducting experiments on balanced and long-tail classification problems using different backbone network architectures. In particular, our method outperforms its competitors by 1.22\% accuracy on CIFAR-100, and 2.15\% on ImageNet-200 using a metric space dimension half of the size of its competitors. Code: https://github.com/msed-Ebrahimi/DL2PA_CVPR24
Related papers
- Discriminative Sample-Guided and Parameter-Efficient Feature Space Adaptation for Cross-Domain Few-Shot Learning [0.0]
Cross-domain few-shot classification presents the challenging task of learning new classes in previously unseen domains.
We introduce a lightweight parameter-efficient adaptation strategy to address overfitting associated with fine-tuning a large number of parameters on small datasets.
We replace the traditional nearest centroid with a discriminative sample-aware loss function, enhancing the model's sensitivity to the inter- and intra-class variances.
arXiv Detail & Related papers (2024-03-07T13:49:29Z) - Rethinking Few-shot 3D Point Cloud Semantic Segmentation [62.80639841429669]
This paper revisits few-shot 3D point cloud semantic segmentation (FS-PCS)
We focus on two significant issues in the state-of-the-art: foreground leakage and sparse point distribution.
To address these issues, we introduce a standardized FS-PCS setting, upon which a new benchmark is built.
arXiv Detail & Related papers (2024-03-01T15:14:47Z) - Combining Metric Learning and Attention Heads For Accurate and Efficient
Multilabel Image Classification [0.0]
We revisit two popular approaches to multilabel classification: transformer-based heads and labels relations information graph processing branches.
Although transformer-based heads are considered to achieve better results than graph-based branches, we argue that with the proper training strategy graph-based methods can demonstrate just a small accuracy drop.
arXiv Detail & Related papers (2022-09-14T12:06:47Z) - Rethinking Semantic Segmentation: A Prototype View [126.59244185849838]
We present a nonparametric semantic segmentation model based on non-learnable prototypes.
Our framework yields compelling results over several datasets.
We expect this work will provoke a rethink of the current de facto semantic segmentation model design.
arXiv Detail & Related papers (2022-03-28T21:15:32Z) - Compare learning: bi-attention network for few-shot learning [6.559037166322981]
One of the Few-shot learning methods called metric learning addresses this challenge by first learning a deep distance metric to determine whether a pair of images belong to the same category.
In this paper, we propose a novel approach named Bi-attention network to compare the instances, which can measure the similarity between embeddings of instances precisely, globally and efficiently.
arXiv Detail & Related papers (2022-03-25T07:39:10Z) - Dual Prototypical Contrastive Learning for Few-shot Semantic
Segmentation [55.339405417090084]
We propose a dual prototypical contrastive learning approach tailored to the few-shot semantic segmentation (FSS) task.
The main idea is to encourage the prototypes more discriminative by increasing inter-class distance while reducing intra-class distance in prototype feature space.
We demonstrate that the proposed dual contrastive learning approach outperforms state-of-the-art FSS methods on PASCAL-5i and COCO-20i datasets.
arXiv Detail & Related papers (2021-11-09T08:14:50Z) - Gated recurrent units and temporal convolutional network for multilabel
classification [122.84638446560663]
This work proposes a new ensemble method for managing multilabel classification.
The core of the proposed approach combines a set of gated recurrent units and temporal convolutional neural networks trained with variants of the Adam gradients optimization approach.
arXiv Detail & Related papers (2021-10-09T00:00:16Z) - Improving Calibration for Long-Tailed Recognition [68.32848696795519]
We propose two methods to improve calibration and performance in such scenarios.
For dataset bias due to different samplers, we propose shifted batch normalization.
Our proposed methods set new records on multiple popular long-tailed recognition benchmark datasets.
arXiv Detail & Related papers (2021-04-01T13:55:21Z) - Meta-Generating Deep Attentive Metric for Few-shot Classification [53.07108067253006]
We present a novel deep metric meta-generation method to generate a specific metric for a new few-shot learning task.
In this study, we structure the metric using a three-layer deep attentive network that is flexible enough to produce a discriminative metric for each task.
We gain surprisingly obvious performance improvement over state-of-the-art competitors, especially in the challenging cases.
arXiv Detail & Related papers (2020-12-03T02:07:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.