Discriminative Sample-Guided and Parameter-Efficient Feature Space Adaptation for Cross-Domain Few-Shot Learning
- URL: http://arxiv.org/abs/2403.04492v3
- Date: Wed, 3 Apr 2024 06:48:15 GMT
- Title: Discriminative Sample-Guided and Parameter-Efficient Feature Space Adaptation for Cross-Domain Few-Shot Learning
- Authors: Rashindrie Perera, Saman Halgamuge,
- Abstract summary: Cross-domain few-shot classification presents the challenging task of learning new classes in previously unseen domains.
We introduce a lightweight parameter-efficient adaptation strategy to address overfitting associated with fine-tuning a large number of parameters on small datasets.
We replace the traditional nearest centroid with a discriminative sample-aware loss function, enhancing the model's sensitivity to the inter- and intra-class variances.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: In this paper, we look at cross-domain few-shot classification which presents the challenging task of learning new classes in previously unseen domains with few labelled examples. Existing methods, though somewhat effective, encounter several limitations, which we alleviate through two significant improvements. First, we introduce a lightweight parameter-efficient adaptation strategy to address overfitting associated with fine-tuning a large number of parameters on small datasets. This strategy employs a linear transformation of pre-trained features, significantly reducing the trainable parameter count. Second, we replace the traditional nearest centroid classifier with a discriminative sample-aware loss function, enhancing the model's sensitivity to the inter- and intra-class variances within the training set for improved clustering in feature space. Empirical evaluations on the Meta-Dataset benchmark showcase that our approach not only improves accuracy up to 7.7\% and 5.3\% on previously seen and unseen datasets, respectively, but also achieves the above performance while being at least $\sim3\times$ more parameter-efficient than existing methods, establishing a new state-of-the-art in cross-domain few-shot learning. Our code is available at https://github.com/rashindrie/DIPA.
Related papers
- Parameter-Efficient Fine-Tuning With Adapters [5.948206235442328]
This research introduces a novel adaptation method utilizing the UniPELT framework as a base.
Our method employs adapters, which enable efficient transfer of pretrained models to new tasks with minimal retraining of the base model parameters.
arXiv Detail & Related papers (2024-05-09T01:40:38Z) - Class-Imbalanced Semi-Supervised Learning for Large-Scale Point Cloud
Semantic Segmentation via Decoupling Optimization [64.36097398869774]
Semi-supervised learning (SSL) has been an active research topic for large-scale 3D scene understanding.
The existing SSL-based methods suffer from severe training bias due to class imbalance and long-tail distributions of the point cloud data.
We introduce a new decoupling optimization framework, which disentangles feature representation learning and classifier in an alternative optimization manner to shift the bias decision boundary effectively.
arXiv Detail & Related papers (2024-01-13T04:16:40Z) - Intra-class Adaptive Augmentation with Neighbor Correction for Deep
Metric Learning [99.14132861655223]
We propose a novel intra-class adaptive augmentation (IAA) framework for deep metric learning.
We reasonably estimate intra-class variations for every class and generate adaptive synthetic samples to support hard samples mining.
Our method significantly improves and outperforms the state-of-the-art methods on retrieval performances by 3%-6%.
arXiv Detail & Related papers (2022-11-29T14:52:38Z) - MemSAC: Memory Augmented Sample Consistency for Large Scale Unsupervised
Domain Adaptation [71.4942277262067]
We propose MemSAC, which exploits sample level similarity across source and target domains to achieve discriminative transfer.
We provide in-depth analysis and insights into the effectiveness of MemSAC.
arXiv Detail & Related papers (2022-07-25T17:55:28Z) - Improving Task Adaptation for Cross-domain Few-shot Learning [41.821234589075445]
Cross-domain few-shot classification aims to learn a classifier from previously unseen classes and domains with few labeled samples.
We show that parametric adapters attached to convolutional layers with residual connections performs the best.
arXiv Detail & Related papers (2021-07-01T10:47:06Z) - Prior Guided Feature Enrichment Network for Few-Shot Segmentation [64.91560451900125]
State-of-the-art semantic segmentation methods require sufficient labeled data to achieve good results.
Few-shot segmentation is proposed to tackle this problem by learning a model that quickly adapts to new classes with a few labeled support samples.
Theses frameworks still face the challenge of generalization ability reduction on unseen classes due to inappropriate use of high-level semantic information.
arXiv Detail & Related papers (2020-08-04T10:41:32Z) - One-Shot Object Detection without Fine-Tuning [62.39210447209698]
We introduce a two-stage model consisting of a first stage Matching-FCOS network and a second stage Structure-Aware Relation Module.
We also propose novel training strategies that effectively improve detection performance.
Our method exceeds the state-of-the-art one-shot performance consistently on multiple datasets.
arXiv Detail & Related papers (2020-05-08T01:59:23Z) - Selecting Relevant Features from a Multi-domain Representation for
Few-shot Classification [91.67977602992657]
We propose a new strategy based on feature selection, which is both simpler and more effective than previous feature adaptation approaches.
We show that a simple non-parametric classifier built on top of such features produces high accuracy and generalizes to domains never seen during training.
arXiv Detail & Related papers (2020-03-20T15:44:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.