論文の概要: Bayesian Methods for Trust in Collaborative Multi-Agent Autonomy
- arxiv url: http://arxiv.org/abs/2403.16956v1
- Date: Mon, 25 Mar 2024 17:17:35 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-27 20:24:47.960733
- Title: Bayesian Methods for Trust in Collaborative Multi-Agent Autonomy
- Title(参考訳): 協調的多エージェント自律における信頼のためのベイズ的手法
- Authors: R. Spencer Hallyburton, Miroslav Pajic,
- Abstract要約: 安全クリティカルで競争の激しい環境では、敵は多数のエージェントに侵入し、妥協することがある。
我々は、この妥協されたエージェント脅威モデルの下で、アートマルチターゲット追跡アルゴリズムの状態を解析する。
階層的ベイズ更新を用いた信頼度推定フレームワークを設計する。
- 参考スコア(独自算出の注目度): 11.246557832016238
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Multi-agent, collaborative sensor fusion is a vital component of a multi-national intelligence toolkit. In safety-critical and/or contested environments, adversaries may infiltrate and compromise a number of agents. We analyze state of the art multi-target tracking algorithms under this compromised agent threat model. We prove that the track existence probability test ("track score") is significantly vulnerable to even small numbers of adversaries. To add security awareness, we design a trust estimation framework using hierarchical Bayesian updating. Our framework builds beliefs of trust on tracks and agents by mapping sensor measurements to trust pseudomeasurements (PSMs) and incorporating prior trust beliefs in a Bayesian context. In case studies, our trust estimation algorithm accurately estimates the trustworthiness of tracks/agents, subject to observability limitations.
- Abstract(参考訳): マルチエージェント・コラボレーティブセンサー融合は多国籍インテリジェンスツールキットの重要な構成要素である。
安全にクリティカルな環境や競合する環境では、敵は多数のエージェントに侵入し、侵入することがある。
我々は、この妥協されたエージェント脅威モデルの下で、最先端のマルチターゲット追跡アルゴリズムを解析する。
トラックの存在確率テスト(トラックスコア)は,少数の敵に対しても極めて脆弱であることを示す。
セキュリティ意識を高めるために,階層的ベイズ更新を用いた信頼度推定フレームワークを設計する。
本フレームワークは,センサ測定を疑似測定(PSM)にマッピングし,ベイズ的文脈に事前信頼を取り入れることで,トラックやエージェントに対する信頼の信念を構築する。
ケーススタディでは,オブザーバビリティの制約の下で,トラック/エージェントの信頼性を正確に推定する。
関連論文リスト
- Criticality and Safety Margins for Reinforcement Learning [53.10194953873209]
我々は,定量化基盤真理とユーザにとっての明確な意義の両面から,批判的枠組みを定めようとしている。
エージェントがn連続的ランダム動作に対するポリシーから逸脱した場合の報酬の減少として真臨界を導入する。
我々はまた、真の臨界と統計的に単調な関係を持つ低オーバーヘッド計量であるプロキシ臨界の概念も導入する。
論文 参考訳(メタデータ) (2024-09-26T21:00:45Z) - U-Trustworthy Models.Reliability, Competence, and Confidence in
Decision-Making [0.21756081703275998]
信頼性の正確な数学的定義を$mathcalU$-trustworthinessと呼ぶ。
$mathcalU$-trustworthinessの文脈において、適切にランク付けされたモデルは本質的に$mathcalU$-trustworthyであることが証明される。
我々は、信頼度を優先する尺度として、AUCメートル法の採用を提唱する。
論文 参考訳(メタデータ) (2024-01-04T04:58:02Z) - TrustGuard: GNN-based Robust and Explainable Trust Evaluation with
Dynamicity Support [59.41529066449414]
本稿では,信頼度を考慮した信頼度評価モデルであるTrustGuardを提案する。
TrustGuardは、スナップショット入力層、空間集約層、時間集約層、予測層を含む階層アーキテクチャで設計されている。
実験により、TrustGuardは、シングルタイムスロットとマルチタイムスロットの信頼予測に関して、最先端のGNNベースの信頼評価モデルより優れていることが示された。
論文 参考訳(メタデータ) (2023-06-23T07:39:12Z) - Converging Measures and an Emergent Model: A Meta-Analysis of
Human-Automation Trust Questionnaires [0.6853165736531939]
我々は、最も頻繁に引用され、最も有効な人間自動および人間ロボット信頼のアンケートを同定する。
本研究では,人間自動信頼の収束モデルを示す。
論文 参考訳(メタデータ) (2023-03-24T04:42:49Z) - Byzantine-Robust Online and Offline Distributed Reinforcement Learning [60.970950468309056]
本稿では,複数のエージェントが環境を探索し,その経験を中央サーバを通じて伝達する分散強化学習環境について考察する。
エージェントの$alpha$-fractionは敵対的であり、任意の偽情報を報告することができる。
我々は、これらの対立エージェントの存在下で、マルコフ決定プロセスの根底にある準最適政策を特定することを模索する。
論文 参考訳(メタデータ) (2022-06-01T00:44:53Z) - Personalized multi-faceted trust modeling to determine trust links in
social media and its potential for misinformation management [61.88858330222619]
ソーシャルメディアにおけるピア間の信頼関係を予測するためのアプローチを提案する。
本稿では,データ駆動型多面信頼モデルを提案する。
信頼を意識したアイテムレコメンデーションタスクで説明され、提案したフレームワークを大規模なYelpデータセットのコンテキストで評価する。
論文 参考訳(メタデータ) (2021-11-11T19:40:51Z) - On the Importance of Trust in Next-Generation Networked CPS Systems: An
AI Perspective [2.1055643409860734]
本稿では,ネットワークエージェントの状態を評価し,意思決定プロセスを改善する手段として信頼を提案する。
信頼関係は、プロトコル内のエンティティの相互作用によって生成された証拠に基づいている。
信頼の証拠を活用することで,フェデレートラーニングのパフォーマンスと安全性が向上することを示す。
論文 参考訳(メタデータ) (2021-04-16T02:12:13Z) - Where Does Trust Break Down? A Quantitative Trust Analysis of Deep
Neural Networks via Trust Matrix and Conditional Trust Densities [94.65749466106664]
本稿では,新しい信頼量化戦略である信頼行列の概念を紹介する。
信頼行列は、所定のアクター・オークル回答シナリオに対して期待される質問・回答信頼を定義する。
我々は、条件付き信頼密度の概念により、信頼密度の概念をさらに拡張する。
論文 参考訳(メタデータ) (2020-09-30T14:33:43Z) - How Much Can We Really Trust You? Towards Simple, Interpretable Trust
Quantification Metrics for Deep Neural Networks [94.65749466106664]
我々は思考実験を行い、信頼と信頼に関する2つの重要な疑問を探求する。
我々は、一連の質問に答える際の行動に基づいて、ディープニューラルネットワークの全体的な信頼性を評価するための一連のメトリクスを紹介します。
提案されたメトリクスは必ずしも完璧ではありませんが、よりよいメトリクスに向かって会話を推し進めることが望まれています。
論文 参考訳(メタデータ) (2020-09-12T17:37:36Z) - Towards Time-Aware Context-Aware Deep Trust Prediction in Online Social
Networks [0.4061135251278187]
信頼は、情報ソースが信頼できるか、誰と共有すべきか、誰から情報を受け入れるべきかを決定する尺度として定義できる。
ソーシャルスパマー検出、フェイクニュース検出、リツイート行動検出、レコメンデーションシステムなど、オンラインソーシャルネットワーク(OSN)への信頼のためのいくつかのアプリケーションがある。
信頼予測は、現在接続されていない2人のユーザー間の新しい信頼関係を予測するプロセスである。
論文 参考訳(メタデータ) (2020-03-21T01:00:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。