GSDF: 3DGS Meets SDF for Improved Rendering and Reconstruction
- URL: http://arxiv.org/abs/2403.16964v2
- Date: Sun, 13 Oct 2024 17:52:00 GMT
- Title: GSDF: 3DGS Meets SDF for Improved Rendering and Reconstruction
- Authors: Mulin Yu, Tao Lu, Linning Xu, Lihan Jiang, Yuanbo Xiangli, Bo Dai,
- Abstract summary: We introduce a novel dual-branch architecture that combines the benefits of a flexible and efficient 3D Gaussian Splatting representation with neural Signed Distance Fields (SDF)
We show on diverse scenes that our design unlocks the potential for more accurate and detailed surface reconstructions.
- Score: 20.232177350064735
- License:
- Abstract: Presenting a 3D scene from multiview images remains a core and long-standing challenge in computer vision and computer graphics. Two main requirements lie in rendering and reconstruction. Notably, SOTA rendering quality is usually achieved with neural volumetric rendering techniques, which rely on aggregated point/primitive-wise color and neglect the underlying scene geometry. Learning of neural implicit surfaces is sparked from the success of neural rendering. Current works either constrain the distribution of density fields or the shape of primitives, resulting in degraded rendering quality and flaws on the learned scene surfaces. The efficacy of such methods is limited by the inherent constraints of the chosen neural representation, which struggles to capture fine surface details, especially for larger, more intricate scenes. To address these issues, we introduce GSDF, a novel dual-branch architecture that combines the benefits of a flexible and efficient 3D Gaussian Splatting (3DGS) representation with neural Signed Distance Fields (SDF). The core idea is to leverage and enhance the strengths of each branch while alleviating their limitation through mutual guidance and joint supervision. We show on diverse scenes that our design unlocks the potential for more accurate and detailed surface reconstructions, and at the meantime benefits 3DGS rendering with structures that are more aligned with the underlying geometry.
Related papers
- GigaGS: Scaling up Planar-Based 3D Gaussians for Large Scene Surface Reconstruction [71.08607897266045]
3D Gaussian Splatting (3DGS) has shown promising performance in novel view synthesis.
We make the first attempt to tackle the challenging task of large-scale scene surface reconstruction.
We propose GigaGS, the first work for high-quality surface reconstruction for large-scale scenes using 3DGS.
arXiv Detail & Related papers (2024-09-10T17:51:39Z) - Denoising Diffusion via Image-Based Rendering [54.20828696348574]
We introduce the first diffusion model able to perform fast, detailed reconstruction and generation of real-world 3D scenes.
First, we introduce a new neural scene representation, IB-planes, that can efficiently and accurately represent large 3D scenes.
Second, we propose a denoising-diffusion framework to learn a prior over this novel 3D scene representation, using only 2D images.
arXiv Detail & Related papers (2024-02-05T19:00:45Z) - Feature 3DGS: Supercharging 3D Gaussian Splatting to Enable Distilled Feature Fields [54.482261428543985]
Methods that use Neural Radiance fields are versatile for traditional tasks such as novel view synthesis.
3D Gaussian splatting has shown state-of-the-art performance on real-time radiance field rendering.
We propose architectural and training changes to efficiently avert this problem.
arXiv Detail & Related papers (2023-12-06T00:46:30Z) - Scaffold-GS: Structured 3D Gaussians for View-Adaptive Rendering [71.44349029439944]
Recent 3D Gaussian Splatting method has achieved the state-of-the-art rendering quality and speed.
We introduce Scaffold-GS, which uses anchor points to distribute local 3D Gaussians.
We show that our method effectively reduces redundant Gaussians while delivering high-quality rendering.
arXiv Detail & Related papers (2023-11-30T17:58:57Z) - GS-IR: 3D Gaussian Splatting for Inverse Rendering [71.14234327414086]
We propose GS-IR, a novel inverse rendering approach based on 3D Gaussian Splatting (GS)
We extend GS, a top-performance representation for novel view synthesis, to estimate scene geometry, surface material, and environment illumination from multi-view images captured under unknown lighting conditions.
The flexible and expressive GS representation allows us to achieve fast and compact geometry reconstruction, photorealistic novel view synthesis, and effective physically-based rendering.
arXiv Detail & Related papers (2023-11-26T02:35:09Z) - Single-view 3D Scene Reconstruction with High-fidelity Shape and Texture [47.44029968307207]
We propose a novel framework for simultaneous high-fidelity recovery of object shapes and textures from single-view images.
Our approach utilizes the proposed Single-view neural implicit Shape and Radiance field (SSR) representations to leverage both explicit 3D shape supervision and volume rendering.
A distinctive feature of our framework is its ability to generate fine-grained textured meshes while seamlessly integrating rendering capabilities into the single-view 3D reconstruction model.
arXiv Detail & Related papers (2023-11-01T11:46:15Z) - Neuralangelo: High-Fidelity Neural Surface Reconstruction [22.971952498343942]
We present Neuralangelo, which combines the representation power of multi-resolution 3D hash grids with neural surface rendering.
Even without auxiliary inputs such as depth, Neuralangelo can effectively recover dense 3D surface structures from multi-view images with fidelity significantly surpassing previous methods.
arXiv Detail & Related papers (2023-06-05T17:59:57Z) - Recovering Fine Details for Neural Implicit Surface Reconstruction [3.9702081347126943]
We present D-NeuS, a volume rendering neural implicit surface reconstruction method capable to recover fine geometry details.
We impose multi-view feature consistency on the surface points, derived by interpolating SDF zero-crossings from sampled points along rays.
Our method reconstructs high-accuracy surfaces with details, and outperforms the state of the art.
arXiv Detail & Related papers (2022-11-21T10:06:09Z) - GAN2X: Non-Lambertian Inverse Rendering of Image GANs [85.76426471872855]
We present GAN2X, a new method for unsupervised inverse rendering that only uses unpaired images for training.
Unlike previous Shape-from-GAN approaches that mainly focus on 3D shapes, we take the first attempt to also recover non-Lambertian material properties by exploiting the pseudo paired data generated by a GAN.
Experiments demonstrate that GAN2X can accurately decompose 2D images to 3D shape, albedo, and specular properties for different object categories, and achieves the state-of-the-art performance for unsupervised single-view 3D face reconstruction.
arXiv Detail & Related papers (2022-06-18T16:58:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.