Joint chest X-ray diagnosis and clinical visual attention prediction with multi-stage cooperative learning: enhancing interpretability
- URL: http://arxiv.org/abs/2403.16970v2
- Date: Fri, 29 Mar 2024 16:14:41 GMT
- Title: Joint chest X-ray diagnosis and clinical visual attention prediction with multi-stage cooperative learning: enhancing interpretability
- Authors: Zirui Qiu, Hassan Rivaz, Yiming Xiao,
- Abstract summary: We introduce a novel deep-learning framework for joint disease diagnosis and prediction of corresponding visual saliency maps for chest X-ray scans.
Specifically, we designed a novel dual-encoder multi-task UNet, which leverages both a DenseNet201 backbone and a Residual and Squeeze-and-Excitation block-based encoder.
Experiments show that our proposed method outperformed existing techniques for chest X-ray diagnosis and the quality of visual saliency map prediction.
- Score: 2.64700310378485
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: As deep learning has become the state-of-the-art for computer-assisted diagnosis, interpretability of the automatic decisions is crucial for clinical deployment. While various methods were proposed in this domain, visual attention maps of clinicians during radiological screening offer a unique asset to provide important insights and can potentially enhance the quality of computer-assisted diagnosis. With this paper, we introduce a novel deep-learning framework for joint disease diagnosis and prediction of corresponding visual saliency maps for chest X-ray scans. Specifically, we designed a novel dual-encoder multi-task UNet, which leverages both a DenseNet201 backbone and a Residual and Squeeze-and-Excitation block-based encoder to extract diverse features for saliency map prediction, and a multi-scale feature-fusion classifier to perform disease classification. To tackle the issue of asynchronous training schedules of individual tasks in multi-task learning, we proposed a multi-stage cooperative learning strategy, with contrastive learning for feature encoder pretraining to boost performance. Experiments show that our proposed method outperformed existing techniques for chest X-ray diagnosis and the quality of visual saliency map prediction.
Related papers
- Multi-task Explainable Skin Lesion Classification [54.76511683427566]
We propose a few-shot-based approach for skin lesions that generalizes well with few labelled data.
The proposed approach comprises a fusion of a segmentation network that acts as an attention module and classification network.
arXiv Detail & Related papers (2023-10-11T05:49:47Z) - MVC: A Multi-Task Vision Transformer Network for COVID-19 Diagnosis from
Chest X-ray Images [10.616065108433798]
We propose a new method, namely Multi-task Vision Transformer (MVC) for simultaneously classifying chest X-ray images and identifying affected regions from the input data.
Our method is built upon the Vision Transformer but extends its learning capability in a multi-task setting.
arXiv Detail & Related papers (2023-09-30T15:52:18Z) - Enhancing Representation in Radiography-Reports Foundation Model: A Granular Alignment Algorithm Using Masked Contrastive Learning [26.425784890859738]
MaCo is a masked contrastive chest X-ray foundation model.
It simultaneously achieves fine-grained image understanding and zero-shot learning for a variety of medical imaging tasks.
It is shown to be superior over 10 state-of-the-art approaches across tasks such as classification, segmentation, detection, and phrase grounding.
arXiv Detail & Related papers (2023-09-12T01:29:37Z) - Joint localization and classification of breast tumors on ultrasound
images using a novel auxiliary attention-based framework [7.6620616780444974]
We propose a novel joint localization and classification model based on the attention mechanism and disentangled semi-supervised learning strategy.
The proposed modularized framework allows flexible network replacement to be generalized for various applications.
arXiv Detail & Related papers (2022-10-11T20:14:13Z) - Multi-Modal Learning Using Physicians Diagnostics for Optical Coherence
Tomography Classification [0.0]
We propose a framework that incorporates experts diagnostics and insights into the analysis of Optical Coherence Tomography.
We create a medical diagnostic attribute dataset to improve disease classification using OCT.
arXiv Detail & Related papers (2022-03-20T18:37:20Z) - Multi-task UNet: Jointly Boosting Saliency Prediction and Disease
Classification on Chest X-ray Images [3.8637285238278434]
This paper describes a novel deep learning model for visual saliency prediction on chest X-ray (CXR) images.
To cope with data deficiency, we exploit the multi-task learning method and tackles disease classification on CXR simultaneously.
Experiments show our proposed deep learning model with our new learning scheme can outperform existing methods dedicated either for saliency prediction or image classification.
arXiv Detail & Related papers (2022-02-15T01:12:42Z) - Leveraging Human Selective Attention for Medical Image Analysis with
Limited Training Data [72.1187887376849]
The selective attention mechanism helps the cognition system focus on task-relevant visual clues by ignoring the presence of distractors.
We propose a framework to leverage gaze for medical image analysis tasks with small training data.
Our method is demonstrated to achieve superior performance on both 3D tumor segmentation and 2D chest X-ray classification tasks.
arXiv Detail & Related papers (2021-12-02T07:55:25Z) - Act Like a Radiologist: Towards Reliable Multi-view Correspondence
Reasoning for Mammogram Mass Detection [49.14070210387509]
We propose an Anatomy-aware Graph convolutional Network (AGN) for mammogram mass detection.
AGN is tailored for mammogram mass detection and endows existing detection methods with multi-view reasoning ability.
Experiments on two standard benchmarks reveal that AGN significantly exceeds the state-of-the-art performance.
arXiv Detail & Related papers (2021-05-21T06:48:34Z) - Inheritance-guided Hierarchical Assignment for Clinical Automatic
Diagnosis [50.15205065710629]
Clinical diagnosis, which aims to assign diagnosis codes for a patient based on the clinical note, plays an essential role in clinical decision-making.
We propose a novel framework to combine the inheritance-guided hierarchical assignment and co-occurrence graph propagation for clinical automatic diagnosis.
arXiv Detail & Related papers (2021-01-27T13:16:51Z) - Learning Binary Semantic Embedding for Histology Image Classification
and Retrieval [56.34863511025423]
We propose a novel method for Learning Binary Semantic Embedding (LBSE)
Based on the efficient and effective embedding, classification and retrieval are performed to provide interpretable computer-assisted diagnosis for histology images.
Experiments conducted on three benchmark datasets validate the superiority of LBSE under various scenarios.
arXiv Detail & Related papers (2020-10-07T08:36:44Z) - Weakly supervised multiple instance learning histopathological tumor
segmentation [51.085268272912415]
We propose a weakly supervised framework for whole slide imaging segmentation.
We exploit a multiple instance learning scheme for training models.
The proposed framework has been evaluated on multi-locations and multi-centric public data from The Cancer Genome Atlas and the PatchCamelyon dataset.
arXiv Detail & Related papers (2020-04-10T13:12:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.