MVC: A Multi-Task Vision Transformer Network for COVID-19 Diagnosis from
Chest X-ray Images
- URL: http://arxiv.org/abs/2310.00418v1
- Date: Sat, 30 Sep 2023 15:52:18 GMT
- Title: MVC: A Multi-Task Vision Transformer Network for COVID-19 Diagnosis from
Chest X-ray Images
- Authors: Huyen Tran, Duc Thanh Nguyen, John Yearwood
- Abstract summary: We propose a new method, namely Multi-task Vision Transformer (MVC) for simultaneously classifying chest X-ray images and identifying affected regions from the input data.
Our method is built upon the Vision Transformer but extends its learning capability in a multi-task setting.
- Score: 10.616065108433798
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Medical image analysis using computer-based algorithms has attracted
considerable attention from the research community and achieved tremendous
progress in the last decade. With recent advances in computing resources and
availability of large-scale medical image datasets, many deep learning models
have been developed for disease diagnosis from medical images. However,
existing techniques focus on sub-tasks, e.g., disease classification and
identification, individually, while there is a lack of a unified framework
enabling multi-task diagnosis. Inspired by the capability of Vision
Transformers in both local and global representation learning, we propose in
this paper a new method, namely Multi-task Vision Transformer (MVC) for
simultaneously classifying chest X-ray images and identifying affected regions
from the input data. Our method is built upon the Vision Transformer but
extends its learning capability in a multi-task setting. We evaluated our
proposed method and compared it with existing baselines on a benchmark dataset
of COVID-19 chest X-ray images. Experimental results verified the superiority
of the proposed method over the baselines on both the image classification and
affected region identification tasks.
Related papers
- Applying Conditional Generative Adversarial Networks for Imaging Diagnosis [3.881664394416534]
This study introduces an innovative application of Conditional Generative Adversarial Networks (C-GAN) integrated with Stacked Hourglass Networks (SHGN)
We address the problem of overfitting, common in deep learning models applied to complex imaging datasets, by augmenting data through rotation and scaling.
A hybrid loss function combining L1 and L2 reconstruction losses, enriched with adversarial training, is introduced to refine segmentation processes in intravascular ultrasound (IVUS) imaging.
arXiv Detail & Related papers (2024-07-17T23:23:09Z) - Joint chest X-ray diagnosis and clinical visual attention prediction with multi-stage cooperative learning: enhancing interpretability [2.64700310378485]
We introduce a novel deep-learning framework for joint disease diagnosis and prediction of corresponding visual saliency maps for chest X-ray scans.
Specifically, we designed a novel dual-encoder multi-task UNet, which leverages both a DenseNet201 backbone and a Residual and Squeeze-and-Excitation block-based encoder.
Experiments show that our proposed method outperformed existing techniques for chest X-ray diagnosis and the quality of visual saliency map prediction.
arXiv Detail & Related papers (2024-03-25T17:31:12Z) - Adapting Visual-Language Models for Generalizable Anomaly Detection in Medical Images [68.42215385041114]
This paper introduces a novel lightweight multi-level adaptation and comparison framework to repurpose the CLIP model for medical anomaly detection.
Our approach integrates multiple residual adapters into the pre-trained visual encoder, enabling a stepwise enhancement of visual features across different levels.
Our experiments on medical anomaly detection benchmarks demonstrate that our method significantly surpasses current state-of-the-art models.
arXiv Detail & Related papers (2024-03-19T09:28:19Z) - VALD-MD: Visual Attribution via Latent Diffusion for Medical Diagnostics [0.0]
Visual attribution in medical imaging seeks to make evident the diagnostically-relevant components of a medical image.
We here present a novel generative visual attribution technique, one that leverages latent diffusion models in combination with domain-specific large language models.
The resulting system also exhibits a range of latent capabilities including zero-shot localized disease induction.
arXiv Detail & Related papers (2024-01-02T19:51:49Z) - End-to-end autoencoding architecture for the simultaneous generation of
medical images and corresponding segmentation masks [3.1133049660590615]
We present an end-to-end architecture based on the Hamiltonian Variational Autoencoder (HVAE)
This approach yields an improved posterior distribution approximation compared to traditional Variational Autoencoders (VAE)
Our method outperforms generative adversarial conditions, showcasing enhancements in image quality synthesis.
arXiv Detail & Related papers (2023-11-17T11:56:53Z) - LVM-Med: Learning Large-Scale Self-Supervised Vision Models for Medical
Imaging via Second-order Graph Matching [59.01894976615714]
We introduce LVM-Med, the first family of deep networks trained on large-scale medical datasets.
We have collected approximately 1.3 million medical images from 55 publicly available datasets.
LVM-Med empirically outperforms a number of state-of-the-art supervised, self-supervised, and foundation models.
arXiv Detail & Related papers (2023-06-20T22:21:34Z) - Generative Residual Attention Network for Disease Detection [51.60842580044539]
We present a novel approach for disease generation in X-rays using a conditional generative adversarial learning.
We generate a corresponding radiology image in a target domain while preserving the identity of the patient.
We then use the generated X-ray image in the target domain to augment our training to improve the detection performance.
arXiv Detail & Related papers (2021-10-25T14:15:57Z) - A Multi-Stage Attentive Transfer Learning Framework for Improving
COVID-19 Diagnosis [49.3704402041314]
We propose a multi-stage attentive transfer learning framework for improving COVID-19 diagnosis.
Our proposed framework consists of three stages to train accurate diagnosis models through learning knowledge from multiple source tasks and data of different domains.
Importantly, we propose a novel self-supervised learning method to learn multi-scale representations for lung CT images.
arXiv Detail & Related papers (2021-01-14T01:39:19Z) - Generative Adversarial U-Net for Domain-free Medical Image Augmentation [49.72048151146307]
The shortage of annotated medical images is one of the biggest challenges in the field of medical image computing.
In this paper, we develop a novel generative method named generative adversarial U-Net.
Our newly designed model is domain-free and generalizable to various medical images.
arXiv Detail & Related papers (2021-01-12T23:02:26Z) - Deep Metric Learning-based Image Retrieval System for Chest Radiograph
and its Clinical Applications in COVID-19 [12.584626589565522]
Chest radiograph (CXR) has been playing a crucial role in COVID-19 patient triaging, diagnosing and monitoring.
Considering the mixed and unspecific signals in CXR, an image retrieval model of CXR that provides both similar images and associated clinical information can be more clinically meaningful.
In this work we develop a novel CXR image retrieval model based on deep metric learning.
arXiv Detail & Related papers (2020-11-26T03:16:48Z) - Explaining Clinical Decision Support Systems in Medical Imaging using
Cycle-Consistent Activation Maximization [112.2628296775395]
Clinical decision support using deep neural networks has become a topic of steadily growing interest.
clinicians are often hesitant to adopt the technology because its underlying decision-making process is considered to be intransparent and difficult to comprehend.
We propose a novel decision explanation scheme based on CycleGAN activation which generates high-quality visualizations of classifier decisions even in smaller data sets.
arXiv Detail & Related papers (2020-10-09T14:39:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.