論文の概要: DriveCoT: Integrating Chain-of-Thought Reasoning with End-to-End Driving
- arxiv url: http://arxiv.org/abs/2403.16996v1
- Date: Mon, 25 Mar 2024 17:59:01 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-27 20:15:04.190056
- Title: DriveCoT: Integrating Chain-of-Thought Reasoning with End-to-End Driving
- Title(参考訳): DriveCoT: チェーン・オブ・サート・ライソンとエンド・ツー・エンド・ドライブの統合
- Authors: Tianqi Wang, Enze Xie, Ruihang Chu, Zhenguo Li, Ping Luo,
- Abstract要約: 本稿では,DriveCoTというエンド・ツー・エンドの運転データセットを総合的に収集する。
センサーデータ、制御決定、および推論プロセスを示すチェーン・オブ・シークレット・ラベルが含まれている。
我々は,私たちのデータセットに基づいてトレーニングされたDriveCoT-Agentと呼ばれるベースラインモデルを提案し,連鎖予測と最終決定を生成する。
- 参考スコア(独自算出の注目度): 81.04174379726251
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: End-to-end driving has made significant progress in recent years, demonstrating benefits such as system simplicity and competitive driving performance under both open-loop and closed-loop settings. Nevertheless, the lack of interpretability and controllability in its driving decisions hinders real-world deployment for end-to-end driving systems. In this paper, we collect a comprehensive end-to-end driving dataset named DriveCoT, leveraging the CARLA simulator. It contains sensor data, control decisions, and chain-of-thought labels to indicate the reasoning process. We utilize the challenging driving scenarios from the CARLA leaderboard 2.0, which involve high-speed driving and lane-changing, and propose a rule-based expert policy to control the vehicle and generate ground truth labels for its reasoning process across different driving aspects and the final decisions. This dataset can serve as an open-loop end-to-end driving benchmark, enabling the evaluation of accuracy in various chain-of-thought aspects and the final decision. In addition, we propose a baseline model called DriveCoT-Agent, trained on our dataset, to generate chain-of-thought predictions and final decisions. The trained model exhibits strong performance in both open-loop and closed-loop evaluations, demonstrating the effectiveness of our proposed dataset.
- Abstract(参考訳): 近年、エンド・ツー・エンドの運転は大きな進歩を遂げており、オープンループとクローズドループの両方の設定で、システムの単純さや競争力のある運転性能などの利点を実証している。
それでも、運転決定における解釈可能性と制御可能性の欠如は、エンド・ツー・エンドの運転システムの現実的な展開を妨げる。
本稿では,CARLAシミュレータを利用して,DriveCoTという総合的なエンドツーエンド運転データセットを収集する。
センサーデータ、制御決定、および推論プロセスを示すチェーン・オブ・シークレット・ラベルが含まれている。
我々は、高速運転と車線変更を含むCARLAリーダーボード2.0からの挑戦的な運転シナリオを活用し、車両を制御するためのルールベースの専門家ポリシーを提案し、異なる運転面と最終決定事項にまたがる推論プロセスのための基礎的真実ラベルを生成する。
このデータセットは、オープンループのエンドツーエンド駆動ベンチマークとして機能し、さまざまなチェーン・オブ・ソートにおける精度の評価と最終的な決定を可能にする。
さらに,私たちのデータセットに基づいてトレーニングされたDriveCoT-Agentと呼ばれるベースラインモデルを提案し,連鎖予測と最終決定を生成する。
トレーニングされたモデルは,オープンループおよびクローズループ評価の両方において高い性能を示し,提案したデータセットの有効性を示す。
関連論文リスト
- DiFSD: Ego-Centric Fully Sparse Paradigm with Uncertainty Denoising and Iterative Refinement for Efficient End-to-End Self-Driving [55.53171248839489]
我々は、エンドツーエンドの自動運転のためのエゴ中心の完全スパースパラダイムであるDiFSDを提案する。
特に、DiFSDは主にスパース知覚、階層的相互作用、反復的な運動プランナーから構成される。
nuScenesとBench2Driveデータセットで実施された実験は、DiFSDの優れた計画性能と優れた効率を実証している。
論文 参考訳(メタデータ) (2024-09-15T15:55:24Z) - Exploring the Causality of End-to-End Autonomous Driving [57.631400236930375]
本稿では,エンドツーエンド自動運転の因果関係を探究し,分析するための包括的アプローチを提案する。
私たちの研究は、エンドツーエンドの自動運転の謎を初めて明らかにし、ブラックボックスを白い箱に変えた。
論文 参考訳(メタデータ) (2024-07-09T04:56:11Z) - Reason2Drive: Towards Interpretable and Chain-based Reasoning for Autonomous Driving [38.28159034562901]
Reason2Driveは600万以上のビデオテキストペアを備えたベンチマークデータセットである。
我々は、自律運転プロセスが知覚、予測、推論ステップの逐次的な組み合わせであると特徴付けている。
本稿では,自律システムにおける連鎖型推論性能を評価するための新しい集計評価指標を提案する。
論文 参考訳(メタデータ) (2023-12-06T18:32:33Z) - Recent Advancements in End-to-End Autonomous Driving using Deep
Learning: A Survey [9.385936248154987]
エンド・ツー・エンドの運転は、モジュラーシステムに関連する欠点を回避するため、有望なパラダイムである。
エンド・ツー・エンド自動運転の最近の進歩は分析され、基礎原理に基づいて研究が分類される。
本稿では,最先端の評価,課題の特定,今後の可能性を探る。
論文 参考訳(メタデータ) (2023-07-10T07:00:06Z) - End-to-end Autonomous Driving: Challenges and Frontiers [45.391430626264764]
エンドツーエンドの自動運転におけるモチベーション、ロードマップ、方法論、課題、今後のトレンドについて、270以上の論文を包括的に分析する。
マルチモダリティ、解釈可能性、因果的混乱、堅牢性、世界モデルなど、いくつかの重要な課題を掘り下げます。
基礎モデルと視覚前訓練の現在の進歩と、これらの技術をエンドツーエンドの駆動フレームワークに組み込む方法について論じる。
論文 参考訳(メタデータ) (2023-06-29T14:17:24Z) - Non-zero-sum Game Control for Multi-vehicle Driving via Reinforcement
Learning [0.0]
本稿では,非ゼロサムゲームとしてマルチサイクル駆動シナリオを構築した。
決定はナッシュ均衡駆動戦略によってなされる。
我々のアルゴリズムは、加速度と操舵角を直接制御することで、完全に駆動できる。
論文 参考訳(メタデータ) (2023-02-08T09:27:20Z) - Integrated Decision and Control for High-Level Automated Vehicles by
Mixed Policy Gradient and Its Experiment Verification [10.393343763237452]
本稿では,IDC(Integrated Decision and Control)に基づく自己進化型意思決定システムを提案する。
制約付き混合ポリシー勾配 (CMPG) と呼ばれるRLアルゴリズムは、IDCの駆動ポリシーを継続的に更新するために提案される。
実験結果から, モデルに基づく手法よりも運転能力の向上が期待できることがわかった。
論文 参考訳(メタデータ) (2022-10-19T14:58:41Z) - Exploring Contextual Representation and Multi-Modality for End-to-End
Autonomous Driving [58.879758550901364]
最近の知覚システムは、センサー融合による空間理解を高めるが、しばしば完全な環境コンテキストを欠いている。
我々は,3台のカメラを統合し,人間の視野をエミュレートするフレームワークを導入し,トップダウンのバードアイビューセマンティックデータと組み合わせて文脈表現を強化する。
提案手法は, オープンループ設定において0.67mの変位誤差を達成し, nuScenesデータセットでは6.9%の精度で現在の手法を上回っている。
論文 参考訳(メタデータ) (2022-10-13T05:56:20Z) - PnPNet: End-to-End Perception and Prediction with Tracking in the Loop [82.97006521937101]
我々は、自動運転車の文脈において、共同認識と運動予測の問題に取り組む。
我々は,入力センサデータとしてエンド・ツー・エンドのモデルであるNetを提案し,各ステップのオブジェクト追跡とその将来レベルを出力する。
論文 参考訳(メタデータ) (2020-05-29T17:57:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。