Visual CoT: Advancing Multi-Modal Language Models with a Comprehensive Dataset and Benchmark for Chain-of-Thought Reasoning
- URL: http://arxiv.org/abs/2403.16999v3
- Date: Mon, 04 Nov 2024 05:50:56 GMT
- Title: Visual CoT: Advancing Multi-Modal Language Models with a Comprehensive Dataset and Benchmark for Chain-of-Thought Reasoning
- Authors: Hao Shao, Shengju Qian, Han Xiao, Guanglu Song, Zhuofan Zong, Letian Wang, Yu Liu, Hongsheng Li,
- Abstract summary: Multi-Modal Large Language Models (MLLMs) have demonstrated impressive performance in various VQA tasks.
They often lack interpretability and struggle with complex visual inputs.
We introduce the large-scale Visual CoT dataset comprising 438k question-answer pairs.
We propose a multi-turn processing pipeline that dynamically focuses on visual inputs and provides interpretable thoughts.
- Score: 40.972648044298374
- License:
- Abstract: Multi-Modal Large Language Models (MLLMs) have demonstrated impressive performance in various VQA tasks. However, they often lack interpretability and struggle with complex visual inputs, especially when the resolution of the input image is high or when the interested region that could provide key information for answering the question is small. To address these challenges, we collect and introduce the large-scale Visual CoT dataset comprising 438k question-answer pairs, annotated with intermediate bounding boxes highlighting key regions essential for answering the questions. Additionally, about 98k pairs of them are annotated with detailed reasoning steps. Importantly, we propose a multi-turn processing pipeline that dynamically focuses on visual inputs and provides interpretable thoughts. We also introduce the related benchmark to evaluate the MLLMs in scenarios requiring specific local region identification. Extensive experiments demonstrate the effectiveness of our framework and shed light on better inference strategies. The Visual CoT dataset, benchmark, and pre-trained models are available on https://hao-shao.com/projects/viscot.html to support further research in this area.
Related papers
- P-MMEval: A Parallel Multilingual Multitask Benchmark for Consistent Evaluation of LLMs [84.24644520272835]
Large language models (LLMs) showcase varied multilingual capabilities across tasks like translation, code generation, and reasoning.
Previous assessments often limited their scope to fundamental natural language processing (NLP) or isolated capability-specific tasks.
We present a pipeline for selecting available and reasonable benchmarks from massive ones, addressing the oversight in previous work regarding the utility of these benchmarks.
We introduce P-MMEval, a large-scale benchmark covering effective fundamental and capability-specialized datasets.
arXiv Detail & Related papers (2024-11-14T01:29:36Z) - ChitroJera: A Regionally Relevant Visual Question Answering Dataset for Bangla [0.0]
We introduce a large-scale Bangla VQA dataset titled ChitroJera, totaling over 15k samples.
We assess the performance of text encoders, image encoders, multimodal models, and our novel dual-encoder models.
Given the underdeveloped state of existing datasets, we envision ChitroJera expanding the scope of Vision-Language tasks in Bangla.
arXiv Detail & Related papers (2024-10-19T05:45:21Z) - MultiChartQA: Benchmarking Vision-Language Models on Multi-Chart Problems [18.188725200923333]
Existing benchmarks for chart-related tasks fall short in capturing the complexity of real-world multi-chart scenarios.
We introduce MultiChartQA, a benchmark that evaluates MLLMs' capabilities in four key areas: direct question answering, parallel question answering, comparative reasoning, and sequential reasoning.
Our results highlight the challenges in multi-chart comprehension and the potential of MultiChartQA to drive advancements in this field.
arXiv Detail & Related papers (2024-10-18T05:15:50Z) - BabelBench: An Omni Benchmark for Code-Driven Analysis of Multimodal and Multistructured Data [61.936320820180875]
Large language models (LLMs) have become increasingly pivotal across various domains.
BabelBench is an innovative benchmark framework that evaluates the proficiency of LLMs in managing multimodal multistructured data with code execution.
Our experimental findings on BabelBench indicate that even cutting-edge models like ChatGPT 4 exhibit substantial room for improvement.
arXiv Detail & Related papers (2024-10-01T15:11:24Z) - MAPWise: Evaluating Vision-Language Models for Advanced Map Queries [47.15503716894445]
This study investigates the efficacy of vision-language models (VLMs) in answering questions based on maps.
We introduce a novel map-based question-answering benchmark, consisting of maps from three geographical regions (United States, India, China)
Our benchmark incorporates 43 diverse question templates, requiring nuanced understanding of relative spatial relationships, intricate map features, and complex reasoning.
arXiv Detail & Related papers (2024-08-30T20:57:34Z) - CODIS: Benchmarking Context-Dependent Visual Comprehension for Multimodal Large Language Models [58.95889895912716]
We introduce a new benchmark, named as CODIS, designed to assess the ability of models to use context provided in free-form text to enhance visual comprehension.
Our findings indicate that MLLMs consistently fall short of human performance on this benchmark.
This underscores the pressing need to enhance the ability of MLLMs to comprehend visuals in a context-dependent manner.
arXiv Detail & Related papers (2024-02-21T08:21:12Z) - ViCLEVR: A Visual Reasoning Dataset and Hybrid Multimodal Fusion Model
for Visual Question Answering in Vietnamese [1.6340299456362617]
We introduce the ViCLEVR dataset, a pioneering collection for evaluating various visual reasoning capabilities in Vietnamese.
We conduct a comprehensive analysis of contemporary visual reasoning systems, offering valuable insights into their strengths and limitations.
We present PhoVIT, a comprehensive multimodal fusion that identifies objects in images based on questions.
arXiv Detail & Related papers (2023-10-27T10:44:50Z) - LOIS: Looking Out of Instance Semantics for Visual Question Answering [17.076621453814926]
We propose a model framework without bounding boxes to understand the causal nexus of object semantics in images.
We implement a mutual relation attention module to model sophisticated and deeper visual semantic relations between instance objects and background information.
Our proposed attention model can further analyze salient image regions by focusing on important word-related questions.
arXiv Detail & Related papers (2023-07-26T12:13:00Z) - Towards Complex Document Understanding By Discrete Reasoning [77.91722463958743]
Document Visual Question Answering (VQA) aims to understand visually-rich documents to answer questions in natural language.
We introduce a new Document VQA dataset, named TAT-DQA, which consists of 3,067 document pages and 16,558 question-answer pairs.
We develop a novel model named MHST that takes into account the information in multi-modalities, including text, layout and visual image, to intelligently address different types of questions.
arXiv Detail & Related papers (2022-07-25T01:43:19Z) - MGA-VQA: Multi-Granularity Alignment for Visual Question Answering [75.55108621064726]
Learning to answer visual questions is a challenging task since the multi-modal inputs are within two feature spaces.
We propose Multi-Granularity Alignment architecture for Visual Question Answering task (MGA-VQA)
Our model splits alignment into different levels to achieve learning better correlations without needing additional data and annotations.
arXiv Detail & Related papers (2022-01-25T22:30:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.