BabelBench: An Omni Benchmark for Code-Driven Analysis of Multimodal and Multistructured Data
- URL: http://arxiv.org/abs/2410.00773v1
- Date: Tue, 1 Oct 2024 15:11:24 GMT
- Title: BabelBench: An Omni Benchmark for Code-Driven Analysis of Multimodal and Multistructured Data
- Authors: Xuwu Wang, Qiwen Cui, Yunzhe Tao, Yiran Wang, Ziwei Chai, Xiaotian Han, Boyi Liu, Jianbo Yuan, Jing Su, Guoyin Wang, Tingkai Liu, Liyu Chen, Tianyi Liu, Tao Sun, Yufeng Zhang, Sirui Zheng, Quanzeng You, Yang Yang, Hongxia Yang,
- Abstract summary: Large language models (LLMs) have become increasingly pivotal across various domains.
BabelBench is an innovative benchmark framework that evaluates the proficiency of LLMs in managing multimodal multistructured data with code execution.
Our experimental findings on BabelBench indicate that even cutting-edge models like ChatGPT 4 exhibit substantial room for improvement.
- Score: 61.936320820180875
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large language models (LLMs) have become increasingly pivotal across various domains, especially in handling complex data types. This includes structured data processing, as exemplified by ChartQA and ChatGPT-Ada, and multimodal unstructured data processing as seen in Visual Question Answering (VQA). These areas have attracted significant attention from both industry and academia. Despite this, there remains a lack of unified evaluation methodologies for these diverse data handling scenarios. In response, we introduce BabelBench, an innovative benchmark framework that evaluates the proficiency of LLMs in managing multimodal multistructured data with code execution. BabelBench incorporates a dataset comprising 247 meticulously curated problems that challenge the models with tasks in perception, commonsense reasoning, logical reasoning, and so on. Besides the basic capabilities of multimodal understanding, structured data processing as well as code generation, these tasks demand advanced capabilities in exploration, planning, reasoning and debugging. Our experimental findings on BabelBench indicate that even cutting-edge models like ChatGPT 4 exhibit substantial room for improvement. The insights derived from our comprehensive analysis offer valuable guidance for future research within the community. The benchmark data can be found at https://github.com/FFD8FFE/babelbench.
Related papers
- RealHiTBench: A Comprehensive Realistic Hierarchical Table Benchmark for Evaluating LLM-Based Table Analysis [16.572608600078922]
RealHiTBench is a benchmark designed to evaluate the performance of Large Language Models (LLMs) across a variety of input formats.<n>Our experimental results, using 25 state-of-the-art LLMs, demonstrate that RealHiTBench is indeed a challenging benchmark.<n>We also develop TreeThinker, a tree-based pipeline that organizes hierarchical headers into a tree structure.
arXiv Detail & Related papers (2025-06-16T12:19:08Z) - BenchHub: A Unified Benchmark Suite for Holistic and Customizable LLM Evaluation [13.897645524385274]
BenchHub is a dynamic benchmark repository that empowers researchers and developers to evaluate large language models (LLMs) more effectively.<n>It is designed to support continuous updates and scalable data management, enabling flexible and customizable evaluation tailored to various domains or use cases.
arXiv Detail & Related papers (2025-05-31T09:24:32Z) - KG-QAGen: A Knowledge-Graph-Based Framework for Systematic Question Generation and Long-Context LLM Evaluation [3.618621510356872]
KG-QAGen is a framework that extracts QA pairs at multiple complexity levels.<n>We construct a dataset of 20,139 QA pairs and open-source a part of it.<n>We evaluate 13 proprietary and open-source LLMs and observe that even the best-performing models are struggling with set-based comparisons.
arXiv Detail & Related papers (2025-05-18T16:46:39Z) - PuzzleBench: A Fully Dynamic Evaluation Framework for Large Multimodal Models on Puzzle Solving [50.50405233978406]
We propose a fully dynamic multimodal evaluation framework, named Open-ended Visual Puzzle Generation (OVPG)<n>OVPG aims to generate fresh, diverse, and verifiable evaluation data automatically in puzzle-solving tasks.<n>Built upon OVPG, we construct PuzzleBench, a dynamic and scalable benchmark comprising 11,840 VQA samples.
arXiv Detail & Related papers (2025-04-15T05:29:31Z) - GridMind: A Multi-Agent NLP Framework for Unified, Cross-Modal NFL Data Insights [0.0]
This paper introduces GridMind, a framework that unifies structured, semi-structured, and unstructured data through Retrieval-Augmented Generation (RAG) and large language models (LLMs)
This approach aligns with the evolving field of multimodal representation learning, where unified models are increasingly essential for real-time, cross-modal interactions.
arXiv Detail & Related papers (2025-03-24T18:33:36Z) - MAmmoTH-VL: Eliciting Multimodal Reasoning with Instruction Tuning at Scale [66.73529246309033]
multimodal large language models (MLLMs) have shown significant potential in a broad range of multimodal tasks.
Existing instruction-tuning datasets only provide phrase-level answers without any intermediate rationales.
We introduce a scalable and cost-effective method to construct a large-scale multimodal instruction-tuning dataset with rich intermediate rationales.
arXiv Detail & Related papers (2024-12-06T18:14:24Z) - P-MMEval: A Parallel Multilingual Multitask Benchmark for Consistent Evaluation of LLMs [84.24644520272835]
Large language models (LLMs) showcase varied multilingual capabilities across tasks like translation, code generation, and reasoning.
Previous assessments often limited their scope to fundamental natural language processing (NLP) or isolated capability-specific tasks.
We present a pipeline for selecting available and reasonable benchmarks from massive ones, addressing the oversight in previous work regarding the utility of these benchmarks.
We introduce P-MMEval, a large-scale benchmark covering effective fundamental and capability-specialized datasets.
arXiv Detail & Related papers (2024-11-14T01:29:36Z) - ERASMO: Leveraging Large Language Models for Enhanced Clustering Segmentation [0.0]
Cluster analysis plays a crucial role in various domains and applications, such as customer segmentation in marketing.
This study introduces ERASMO, a framework designed to fine-tune a pretrained language model on textually encoded data.
arXiv Detail & Related papers (2024-10-01T00:37:16Z) - What are the Essential Factors in Crafting Effective Long Context Multi-Hop Instruction Datasets? Insights and Best Practices [91.71951459594074]
Long language models (LLMs) with extended context windows have significantly improved tasks such as information extraction, question answering, and complex planning scenarios.
Existing methods typically utilize the Self-Instruct framework to generate instruction tuning data for better long context capability improvement.
We propose the Multi-agent Interactive Multi-hop Generation framework, incorporating a Quality Verification Agent, a Single-hop Question Generation Agent, a Multiple Question Sampling Strategy, and a Multi-hop Question Merger Agent.
Our findings show that our synthetic high-quality long-context instruction data significantly enhances model performance, even surpassing models trained on larger amounts of human
arXiv Detail & Related papers (2024-09-03T13:30:00Z) - Knowledge-Aware Reasoning over Multimodal Semi-structured Tables [85.24395216111462]
This study investigates whether current AI models can perform knowledge-aware reasoning on multimodal structured data.
We introduce MMTabQA, a new dataset designed for this purpose.
Our experiments highlight substantial challenges for current AI models in effectively integrating and interpreting multiple text and image inputs.
arXiv Detail & Related papers (2024-08-25T15:17:43Z) - MindBench: A Comprehensive Benchmark for Mind Map Structure Recognition and Analysis [35.31073435549237]
We introduce the new benchmark named MindBench for document analysis.
It includes meticulously constructed bilingual authentic or synthetic images, detailed annotations, evaluation metrics and baseline models.
These tasks include full parsing, partial parsing, position-related parsing, structured Visual Question Answering (VQA), and position-related VQA.
arXiv Detail & Related papers (2024-07-03T06:39:18Z) - DiscoveryBench: Towards Data-Driven Discovery with Large Language Models [50.36636396660163]
We present DiscoveryBench, the first comprehensive benchmark that formalizes the multi-step process of data-driven discovery.
Our benchmark contains 264 tasks collected across 6 diverse domains, such as sociology and engineering.
Our benchmark, thus, illustrates the challenges in autonomous data-driven discovery and serves as a valuable resource for the community to make progress.
arXiv Detail & Related papers (2024-07-01T18:58:22Z) - 3DBench: A Scalable 3D Benchmark and Instruction-Tuning Dataset [13.808860456901204]
We introduce a scalable 3D benchmark, accompanied by a large-scale instruction-tuning dataset known as 3DBench.
Specifically, we establish the benchmark that spans a wide range of spatial and semantic scales, from object-level to scene-level.
We present a rigorous pipeline for automatically constructing scalable 3D instruction-tuning datasets, covering 10 diverse multi-modal tasks with more than 0.23 million QA pairs generated in total.
arXiv Detail & Related papers (2024-04-23T02:06:10Z) - An Integrated Data Processing Framework for Pretraining Foundation Models [57.47845148721817]
Researchers and practitioners often have to manually curate datasets from difference sources.
We propose a data processing framework that integrates a Processing Module and an Analyzing Module.
The proposed framework is easy to use and highly flexible.
arXiv Detail & Related papers (2024-02-26T07:22:51Z) - Blackbird's language matrices (BLMs): a new benchmark to investigate
disentangled generalisation in neural networks [2.5567566997688034]
We illustrate Blackbird's language matrices (BLMs), a novel grammatical dataset developed to test a linguistic variant of Raven's progressive matrices.
The dataset consists of 44800 sentences, generatively constructed to support investigations of current models' linguistic mastery of grammatical agreement rules.
We show that this language task and the data that instantiate it provide a new challenging testbed to understand generalisation and abstraction.
arXiv Detail & Related papers (2022-05-22T16:51:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.